{"title":"非牛顿多向过滤解的奇异性","authors":"Meiling Zhou, Liangwei Wang, Jingxue Yin, Can Lu","doi":"10.1016/j.nonrwa.2025.104518","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the non-Newtonian polytropic filtration equation <span><math><mrow><msub><mi>u</mi><mi>t</mi></msub><mo>−</mo><mi>div</mi><mrow><mo>(</mo><msup><mrow><mo>|</mo><mrow><mi>∇</mi><msup><mi>u</mi><mi>m</mi></msup></mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>∇</mi><msup><mi>u</mi><mi>m</mi></msup><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mrow></math></span> with a positive initial data on a smooth bounded domain <span><math><mrow><mstyle><mi>Ω</mi></mstyle><mo>⊂</mo><msup><mi>R</mi><mi>n</mi></msup></mrow></math></span> for <span><math><mrow><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, where <span><math><mrow><mn>0</mn><mo><</mo><mi>m</mi><mo><</mo><mn>1</mn></mrow></math></span>, <span><math><mrow><mn>2</mn><mo><</mo><mi>p</mi><mo><</mo><mn>1</mn><mo>+</mo><mfrac><mn>1</mn><mi>m</mi></mfrac></mrow></math></span>, and in particular <span><math><mrow><mi>p</mi><mo><</mo><mfrac><mrow><mi>n</mi><mrow><mo>(</mo><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>+</mo><mi>m</mi><mi>n</mi></mrow></mfrac></mrow></math></span>. To investigate the regularity of solutions to the Dirichlet problem for this equation when the initial data exhibit a singularity of the form <span><math><mrow><msub><mi>u</mi><mn>0</mn></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>∼</mo><mi>A</mi><msup><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mrow><mo>−</mo><mi>γ</mi></mrow></msup></mrow></math></span> for <span><math><mrow><mi>x</mi><mo>∈</mo><mstyle><mi>Ω</mi></mstyle><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></mrow></math></span> with <span><math><mrow><mi>A</mi><mo>></mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>γ</mi><mo>></mo><mn>0</mn></mrow></math></span>, we introduce a linear diffusion term in the regularization process. This addition ensures that the equation remains uniformly parabolic, thereby satisfying both the maximum principle and the comparison principle. The desired results are obtained provided that the coefficient of this regularization term converges to zero in the norm of the appropriate function space. This paper shows that the behavior of the solution depends critically on the value of the exponent <span><math><mi>γ</mi></math></span> in the initial data, leading to the following distinct cases: finite-time boundedness, infinite-time boundedness, singular stabilization, and infinite-time blow-up.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"89 ","pages":"Article 104518"},"PeriodicalIF":1.8000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Singularities of solutions to the non-Newtonian polytropic filtration\",\"authors\":\"Meiling Zhou, Liangwei Wang, Jingxue Yin, Can Lu\",\"doi\":\"10.1016/j.nonrwa.2025.104518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study the non-Newtonian polytropic filtration equation <span><math><mrow><msub><mi>u</mi><mi>t</mi></msub><mo>−</mo><mi>div</mi><mrow><mo>(</mo><msup><mrow><mo>|</mo><mrow><mi>∇</mi><msup><mi>u</mi><mi>m</mi></msup></mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>∇</mi><msup><mi>u</mi><mi>m</mi></msup><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mrow></math></span> with a positive initial data on a smooth bounded domain <span><math><mrow><mstyle><mi>Ω</mi></mstyle><mo>⊂</mo><msup><mi>R</mi><mi>n</mi></msup></mrow></math></span> for <span><math><mrow><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, where <span><math><mrow><mn>0</mn><mo><</mo><mi>m</mi><mo><</mo><mn>1</mn></mrow></math></span>, <span><math><mrow><mn>2</mn><mo><</mo><mi>p</mi><mo><</mo><mn>1</mn><mo>+</mo><mfrac><mn>1</mn><mi>m</mi></mfrac></mrow></math></span>, and in particular <span><math><mrow><mi>p</mi><mo><</mo><mfrac><mrow><mi>n</mi><mrow><mo>(</mo><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>+</mo><mi>m</mi><mi>n</mi></mrow></mfrac></mrow></math></span>. To investigate the regularity of solutions to the Dirichlet problem for this equation when the initial data exhibit a singularity of the form <span><math><mrow><msub><mi>u</mi><mn>0</mn></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>∼</mo><mi>A</mi><msup><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mrow><mo>−</mo><mi>γ</mi></mrow></msup></mrow></math></span> for <span><math><mrow><mi>x</mi><mo>∈</mo><mstyle><mi>Ω</mi></mstyle><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></mrow></math></span> with <span><math><mrow><mi>A</mi><mo>></mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>γ</mi><mo>></mo><mn>0</mn></mrow></math></span>, we introduce a linear diffusion term in the regularization process. This addition ensures that the equation remains uniformly parabolic, thereby satisfying both the maximum principle and the comparison principle. The desired results are obtained provided that the coefficient of this regularization term converges to zero in the norm of the appropriate function space. This paper shows that the behavior of the solution depends critically on the value of the exponent <span><math><mi>γ</mi></math></span> in the initial data, leading to the following distinct cases: finite-time boundedness, infinite-time boundedness, singular stabilization, and infinite-time blow-up.</div></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"89 \",\"pages\":\"Article 104518\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121825002007\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825002007","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了光滑有界域Ω∧Rn上具有正初始数据的非牛顿多向滤波方程ut−div(|∇um|p−2∇um)=0,其中n≥3,0<m< 1,2 <p<1+1m,特别是p<;n(m+1)1+mn。为了研究该方程的Dirichlet问题解的正则性,当初始数据表现为形式为u0(x) ~ a |x|−γ的奇点时,对于x∈Ω∈{0},具有a >;0和γ>;0,我们在正则化过程中引入线性扩散项。这一补充保证了方程保持一致抛物,从而同时满足极大值原理和比较原理。当正则化项的系数在适当的函数空间范数内收敛于零时,得到了期望的结果。本文证明了解的行为严重依赖于初始数据中指数γ的值,从而导致以下不同的情况:有限时间有界性,无限时间有界性,奇异稳定和无限时间爆破。
Singularities of solutions to the non-Newtonian polytropic filtration
In this paper, we study the non-Newtonian polytropic filtration equation with a positive initial data on a smooth bounded domain for , where , , and in particular . To investigate the regularity of solutions to the Dirichlet problem for this equation when the initial data exhibit a singularity of the form for with and , we introduce a linear diffusion term in the regularization process. This addition ensures that the equation remains uniformly parabolic, thereby satisfying both the maximum principle and the comparison principle. The desired results are obtained provided that the coefficient of this regularization term converges to zero in the norm of the appropriate function space. This paper shows that the behavior of the solution depends critically on the value of the exponent in the initial data, leading to the following distinct cases: finite-time boundedness, infinite-time boundedness, singular stabilization, and infinite-time blow-up.
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.