石墨烯中的非对称门Mach-Zehnder干涉测量:多径电导振荡和可见性特性

IF 3.1 4区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Taegeun Song , Nojoon Myoung
{"title":"石墨烯中的非对称门Mach-Zehnder干涉测量:多径电导振荡和可见性特性","authors":"Taegeun Song ,&nbsp;Nojoon Myoung","doi":"10.1016/j.cap.2025.09.016","DOIUrl":null,"url":null,"abstract":"<div><div>Graphene provides an excellent platform for investigating electron quantum interference due to its outstanding coherent properties. In the quantum Hall regime, Mach–Zehnder (MZ) electronic interferometers are realized using p–n junctions in graphene, where electron interference is highly protected against decoherence. In this work, we present a phenomenological framework for graphene-based MZ interferometry with asymmetric p–n junction configurations. We show that the enclosed interferometer area can be tuned by asymmetric gate potentials, and additional MZ pathways emerge in higher-filling-factor scenarios, e.g., <span><math><mrow><mo>(</mo><msub><mi>ν</mi><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mi>ν</mi><mrow><mi>p</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mo>−</mo><mn>3</mn><mo>,</mo><mo>+</mo><mn>3</mn><mo>)</mo></mrow></math></span>. The resulting complicated beat oscillations in asymmetric-gate MZ interference are efficiently analyzed using a machine-learning-based Fourier transform, which yields improved peak-to-background ratios compared to conventional signal-processing techniques. Furthermore, we examine the impact of the asymmetric gate on the interference visibility, finding that interference visibility is enhanced under symmetric gate conditions.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"80 ","pages":"Pages 341-345"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymmetric-gate Mach–Zehnder interferometry in graphene: Multi-path conductance oscillations and visibility characteristics\",\"authors\":\"Taegeun Song ,&nbsp;Nojoon Myoung\",\"doi\":\"10.1016/j.cap.2025.09.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Graphene provides an excellent platform for investigating electron quantum interference due to its outstanding coherent properties. In the quantum Hall regime, Mach–Zehnder (MZ) electronic interferometers are realized using p–n junctions in graphene, where electron interference is highly protected against decoherence. In this work, we present a phenomenological framework for graphene-based MZ interferometry with asymmetric p–n junction configurations. We show that the enclosed interferometer area can be tuned by asymmetric gate potentials, and additional MZ pathways emerge in higher-filling-factor scenarios, e.g., <span><math><mrow><mo>(</mo><msub><mi>ν</mi><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mi>ν</mi><mrow><mi>p</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mo>−</mo><mn>3</mn><mo>,</mo><mo>+</mo><mn>3</mn><mo>)</mo></mrow></math></span>. The resulting complicated beat oscillations in asymmetric-gate MZ interference are efficiently analyzed using a machine-learning-based Fourier transform, which yields improved peak-to-background ratios compared to conventional signal-processing techniques. Furthermore, we examine the impact of the asymmetric gate on the interference visibility, finding that interference visibility is enhanced under symmetric gate conditions.</div></div>\",\"PeriodicalId\":11037,\"journal\":{\"name\":\"Current Applied Physics\",\"volume\":\"80 \",\"pages\":\"Pages 341-345\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567173925001956\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173925001956","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

石墨烯由于其出色的相干特性,为研究电子量子干涉提供了一个很好的平台。在量子霍尔体系中,马赫-曾德尔(MZ)电子干涉仪是利用石墨烯中的p-n结实现的,石墨烯中的电子干扰具有高度的退相干性。在这项工作中,我们提出了一个具有不对称pn结结构的石墨烯基MZ干涉测量的现象学框架。我们表明,封闭的干涉仪区域可以通过不对称门电位进行调谐,并且在高填充因子的情况下出现额外的MZ通路,例如(νn,νp)=(−3,+3)。使用基于机器学习的傅立叶变换有效地分析了非对称门MZ干扰中产生的复杂拍振荡,与传统的信号处理技术相比,该方法产生了更好的峰背景比。此外,我们研究了非对称栅极对干扰可见性的影响,发现对称栅极条件下干扰可见性增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymmetric-gate Mach–Zehnder interferometry in graphene: Multi-path conductance oscillations and visibility characteristics
Graphene provides an excellent platform for investigating electron quantum interference due to its outstanding coherent properties. In the quantum Hall regime, Mach–Zehnder (MZ) electronic interferometers are realized using p–n junctions in graphene, where electron interference is highly protected against decoherence. In this work, we present a phenomenological framework for graphene-based MZ interferometry with asymmetric p–n junction configurations. We show that the enclosed interferometer area can be tuned by asymmetric gate potentials, and additional MZ pathways emerge in higher-filling-factor scenarios, e.g., (νn,νp)=(3,+3). The resulting complicated beat oscillations in asymmetric-gate MZ interference are efficiently analyzed using a machine-learning-based Fourier transform, which yields improved peak-to-background ratios compared to conventional signal-processing techniques. Furthermore, we examine the impact of the asymmetric gate on the interference visibility, finding that interference visibility is enhanced under symmetric gate conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Applied Physics
Current Applied Physics 物理-材料科学:综合
CiteScore
4.80
自引率
0.00%
发文量
213
审稿时长
33 days
期刊介绍: Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications. Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques. Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals. Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review. The Journal is owned by the Korean Physical Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信