通过优化还原氧化石墨烯复合材料提高钴钒氧化物超级电容器的电化学性能

IF 5.5 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
R.A. Kadam , M.A. Yewale , S.L. Kadam , A.M. Teli , S.V. Desarada , S.A. Alshehri , R.K. Chava , R. Venkatesan , D.K. Shin
{"title":"通过优化还原氧化石墨烯复合材料提高钴钒氧化物超级电容器的电化学性能","authors":"R.A. Kadam ,&nbsp;M.A. Yewale ,&nbsp;S.L. Kadam ,&nbsp;A.M. Teli ,&nbsp;S.V. Desarada ,&nbsp;S.A. Alshehri ,&nbsp;R.K. Chava ,&nbsp;R. Venkatesan ,&nbsp;D.K. Shin","doi":"10.1016/j.matchar.2025.115640","DOIUrl":null,"url":null,"abstract":"<div><div>This study illustrates the strategic improvement of cobalt vanadium oxide (CVO) electrodes for supercapacitor applications by integrating reduced graphene oxide (rGO) through a hydrothermal synthesis method. The optimized CVO-12 mg-rGO composite had a specific capacitance of 327 F/g at 2 mA/cm<sup>2</sup>, an energy density of 11.34 Wh/kg, and a power density of 124 W/kg. This was better than pristine CVO and better than several other vanadate-based electrodes that have been reported. BET analysis showed that rGO exfoliation increased the surface area (16.26 m<sup>2</sup>/g) and made the pores easier to get to. EIS showed that the charge transfer resistance was lower (1.6 Ω). The made-up asymmetric device (CVO-12 mg-rGO//AC) showed that it could be used in real life by having a specific capacitance of 25.92 F/g, an energy density of 11.65 Wh/ kg, a high coulombic efficiency of about 99.9 %, and a great cycling retention of 70 % after 4.7 k cycles. These results show that combining pseudocapacitive CVO and conductive rGO in a synergistic way greatly improves the transport of electrons and ions, electrochemical reversibility, and long-term stability. The results show that CVO@rGO composites are promising electrodes for next-generation high-performance supercapacitors.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"229 ","pages":"Article 115640"},"PeriodicalIF":5.5000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced electrochemical performance of cobalt vanadium oxide supercapacitors through optimized reduced graphene oxide composite\",\"authors\":\"R.A. Kadam ,&nbsp;M.A. Yewale ,&nbsp;S.L. Kadam ,&nbsp;A.M. Teli ,&nbsp;S.V. Desarada ,&nbsp;S.A. Alshehri ,&nbsp;R.K. Chava ,&nbsp;R. Venkatesan ,&nbsp;D.K. Shin\",\"doi\":\"10.1016/j.matchar.2025.115640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study illustrates the strategic improvement of cobalt vanadium oxide (CVO) electrodes for supercapacitor applications by integrating reduced graphene oxide (rGO) through a hydrothermal synthesis method. The optimized CVO-12 mg-rGO composite had a specific capacitance of 327 F/g at 2 mA/cm<sup>2</sup>, an energy density of 11.34 Wh/kg, and a power density of 124 W/kg. This was better than pristine CVO and better than several other vanadate-based electrodes that have been reported. BET analysis showed that rGO exfoliation increased the surface area (16.26 m<sup>2</sup>/g) and made the pores easier to get to. EIS showed that the charge transfer resistance was lower (1.6 Ω). The made-up asymmetric device (CVO-12 mg-rGO//AC) showed that it could be used in real life by having a specific capacitance of 25.92 F/g, an energy density of 11.65 Wh/ kg, a high coulombic efficiency of about 99.9 %, and a great cycling retention of 70 % after 4.7 k cycles. These results show that combining pseudocapacitive CVO and conductive rGO in a synergistic way greatly improves the transport of electrons and ions, electrochemical reversibility, and long-term stability. The results show that CVO@rGO composites are promising electrodes for next-generation high-performance supercapacitors.</div></div>\",\"PeriodicalId\":18727,\"journal\":{\"name\":\"Materials Characterization\",\"volume\":\"229 \",\"pages\":\"Article 115640\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Characterization\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1044580325009295\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580325009295","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过水热合成方法集成还原氧化石墨烯(rGO),说明了用于超级电容器应用的钴钒氧化物(CVO)电极的战略性改进。优化后的cvo - 12mg - rgo复合材料在2 mA/cm2时的比电容为327 F/g,能量密度为11.34 Wh/kg,功率密度为124 W/kg。这比原始CVO和其他几种基于钒酸盐的电极都要好。BET分析表明,还原氧化石墨烯的剥离增加了孔隙的表面积(16.26 m2/g),使孔隙更容易到达。EIS显示电荷传递电阻较低(1.6 Ω)。结果表明,该非对称器件(CVO-12 mg-rGO//AC)具有25.92 F/g的比电容、11.65 Wh/ kg的能量密度、99.9%的库仑效率和高达70%的循环保留率,可用于实际生活。这些结果表明,将假电容性CVO和导电性rGO以协同方式结合在一起,大大提高了电子和离子的传递,电化学可逆性和长期稳定性。结果表明,CVO@rGO复合材料是下一代高性能超级电容器的理想电极。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced electrochemical performance of cobalt vanadium oxide supercapacitors through optimized reduced graphene oxide composite

Enhanced electrochemical performance of cobalt vanadium oxide supercapacitors through optimized reduced graphene oxide composite
This study illustrates the strategic improvement of cobalt vanadium oxide (CVO) electrodes for supercapacitor applications by integrating reduced graphene oxide (rGO) through a hydrothermal synthesis method. The optimized CVO-12 mg-rGO composite had a specific capacitance of 327 F/g at 2 mA/cm2, an energy density of 11.34 Wh/kg, and a power density of 124 W/kg. This was better than pristine CVO and better than several other vanadate-based electrodes that have been reported. BET analysis showed that rGO exfoliation increased the surface area (16.26 m2/g) and made the pores easier to get to. EIS showed that the charge transfer resistance was lower (1.6 Ω). The made-up asymmetric device (CVO-12 mg-rGO//AC) showed that it could be used in real life by having a specific capacitance of 25.92 F/g, an energy density of 11.65 Wh/ kg, a high coulombic efficiency of about 99.9 %, and a great cycling retention of 70 % after 4.7 k cycles. These results show that combining pseudocapacitive CVO and conductive rGO in a synergistic way greatly improves the transport of electrons and ions, electrochemical reversibility, and long-term stability. The results show that CVO@rGO composites are promising electrodes for next-generation high-performance supercapacitors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Characterization
Materials Characterization 工程技术-材料科学:表征与测试
CiteScore
7.60
自引率
8.50%
发文量
746
审稿时长
36 days
期刊介绍: Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials. The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal. The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include: Metals & Alloys Ceramics Nanomaterials Biomedical materials Optical materials Composites Natural Materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信