胃肠道疾病的多模式学习

Luwen Zhang , Yubing Shen , Wentao Gu , Peng Wu
{"title":"胃肠道疾病的多模式学习","authors":"Luwen Zhang ,&nbsp;Yubing Shen ,&nbsp;Wentao Gu ,&nbsp;Peng Wu","doi":"10.1016/j.gande.2025.10.001","DOIUrl":null,"url":null,"abstract":"<div><div>Gastrointestinal diseases represent a significant global health challenge, with current diagnostic and management approaches constrained by the integration of heterogeneous multimodal data. This review synthesizes the development prospects of multimodal applications in gastroenterology. By summarizing recent literatures, we demonstrate how multimodal integration can facilitate gastrointestinal disease screening, enable more accurate staging, support treatment decision-making, and optimize clinical workflows. Feature-level fusion serves as the dominant technique in current implementations, while hybrid approaches combining multiple fusion levels are increasingly adopted to enhance flexibility in complex clinical scenarios. Despite these advances, retrospective performance does not guarantee clinical success. Persistent challenges, including data heterogeneity, modality incompleteness, and barriers to clinical translation, remain to be addressed. Overall, this review underscores the transformative potential of multimodal learning to advance precision gastroenterology through integrated diagnostic and therapeutic.</div></div>","PeriodicalId":100571,"journal":{"name":"Gastroenterology & Endoscopy","volume":"3 4","pages":"Pages 251-258"},"PeriodicalIF":0.0000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal learning in gastrointestinal diseases\",\"authors\":\"Luwen Zhang ,&nbsp;Yubing Shen ,&nbsp;Wentao Gu ,&nbsp;Peng Wu\",\"doi\":\"10.1016/j.gande.2025.10.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Gastrointestinal diseases represent a significant global health challenge, with current diagnostic and management approaches constrained by the integration of heterogeneous multimodal data. This review synthesizes the development prospects of multimodal applications in gastroenterology. By summarizing recent literatures, we demonstrate how multimodal integration can facilitate gastrointestinal disease screening, enable more accurate staging, support treatment decision-making, and optimize clinical workflows. Feature-level fusion serves as the dominant technique in current implementations, while hybrid approaches combining multiple fusion levels are increasingly adopted to enhance flexibility in complex clinical scenarios. Despite these advances, retrospective performance does not guarantee clinical success. Persistent challenges, including data heterogeneity, modality incompleteness, and barriers to clinical translation, remain to be addressed. Overall, this review underscores the transformative potential of multimodal learning to advance precision gastroenterology through integrated diagnostic and therapeutic.</div></div>\",\"PeriodicalId\":100571,\"journal\":{\"name\":\"Gastroenterology & Endoscopy\",\"volume\":\"3 4\",\"pages\":\"Pages 251-258\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gastroenterology & Endoscopy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949752325000809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gastroenterology & Endoscopy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949752325000809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

胃肠道疾病是一项重大的全球健康挑战,目前的诊断和管理方法受到异构多模式数据整合的限制。本文综述了多模态在胃肠病学中的应用前景。通过总结最近的文献,我们展示了多模式整合如何促进胃肠道疾病筛查,实现更准确的分期,支持治疗决策,并优化临床工作流程。特征级融合是目前实现的主要技术,同时越来越多地采用结合多个融合级别的混合方法来增强复杂临床场景的灵活性。尽管取得了这些进展,但回顾性表现并不能保证临床成功。持续存在的挑战,包括数据异质性、模态不完整和临床翻译障碍,仍有待解决。总的来说,这篇综述强调了多模式学习的变革潜力,通过综合诊断和治疗来推进精确的胃肠病学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimodal learning in gastrointestinal diseases
Gastrointestinal diseases represent a significant global health challenge, with current diagnostic and management approaches constrained by the integration of heterogeneous multimodal data. This review synthesizes the development prospects of multimodal applications in gastroenterology. By summarizing recent literatures, we demonstrate how multimodal integration can facilitate gastrointestinal disease screening, enable more accurate staging, support treatment decision-making, and optimize clinical workflows. Feature-level fusion serves as the dominant technique in current implementations, while hybrid approaches combining multiple fusion levels are increasingly adopted to enhance flexibility in complex clinical scenarios. Despite these advances, retrospective performance does not guarantee clinical success. Persistent challenges, including data heterogeneity, modality incompleteness, and barriers to clinical translation, remain to be addressed. Overall, this review underscores the transformative potential of multimodal learning to advance precision gastroenterology through integrated diagnostic and therapeutic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信