Wan-Chen Cindy Lee, , , Pierre-Louis Lagueux-Tremblay, , , Zongbin Jia, , and , Song Lin*,
{"title":"氧合烯丙基亲电试剂的区域选择性电化学硼化:方法发展及合成应用","authors":"Wan-Chen Cindy Lee, , , Pierre-Louis Lagueux-Tremblay, , , Zongbin Jia, , and , Song Lin*, ","doi":"10.1021/acscentsci.5c01074","DOIUrl":null,"url":null,"abstract":"<p >Allylboronic esters are highly versatile intermediates in organic synthesis. In this work, we report a general and scalable strategy for the regioselective deoxygenative borylation of allylic alcohols, enals, enones, and acrylates, upgrading these abundant functional groups in feedstock chemicals and natural products into value-added borylated synthetic handles. This method achieves efficient C–O bond activation under mild electroreductive conditions, and the effective control of regioselectivity was made possible by optimizing the borylating agent and supporting electrolyte. The utility of this approach was further demonstrated in a series of telescoped synthetic sequences, enabling alcohol and carbonyl transposition, formal cross-coupling of alcohols and aldehydes, allylic amination, and vinylogous homologation. This electrosynthetic protocol offers a broadly applicable, modular route to complex allylboron compounds from simple and readily available starting materials, including terpenoid natural products.</p><p >Regioselective electrochemical borylation of allylic alcohols, enones, enals, and acrylates is reported, which enables diverse synthetic strategies to upgrade abundant feedstocks and natural products.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 10","pages":"1959–1968"},"PeriodicalIF":10.4000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acscentsci.5c01074","citationCount":"0","resultStr":"{\"title\":\"Regioselective Electrochemical Borylation of Oxygenated Allylic Electrophiles: Method Development and Synthetic Applications\",\"authors\":\"Wan-Chen Cindy Lee, , , Pierre-Louis Lagueux-Tremblay, , , Zongbin Jia, , and , Song Lin*, \",\"doi\":\"10.1021/acscentsci.5c01074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Allylboronic esters are highly versatile intermediates in organic synthesis. In this work, we report a general and scalable strategy for the regioselective deoxygenative borylation of allylic alcohols, enals, enones, and acrylates, upgrading these abundant functional groups in feedstock chemicals and natural products into value-added borylated synthetic handles. This method achieves efficient C–O bond activation under mild electroreductive conditions, and the effective control of regioselectivity was made possible by optimizing the borylating agent and supporting electrolyte. The utility of this approach was further demonstrated in a series of telescoped synthetic sequences, enabling alcohol and carbonyl transposition, formal cross-coupling of alcohols and aldehydes, allylic amination, and vinylogous homologation. This electrosynthetic protocol offers a broadly applicable, modular route to complex allylboron compounds from simple and readily available starting materials, including terpenoid natural products.</p><p >Regioselective electrochemical borylation of allylic alcohols, enones, enals, and acrylates is reported, which enables diverse synthetic strategies to upgrade abundant feedstocks and natural products.</p>\",\"PeriodicalId\":10,\"journal\":{\"name\":\"ACS Central Science\",\"volume\":\"11 10\",\"pages\":\"1959–1968\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acscentsci.5c01074\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Central Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acscentsci.5c01074\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscentsci.5c01074","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Regioselective Electrochemical Borylation of Oxygenated Allylic Electrophiles: Method Development and Synthetic Applications
Allylboronic esters are highly versatile intermediates in organic synthesis. In this work, we report a general and scalable strategy for the regioselective deoxygenative borylation of allylic alcohols, enals, enones, and acrylates, upgrading these abundant functional groups in feedstock chemicals and natural products into value-added borylated synthetic handles. This method achieves efficient C–O bond activation under mild electroreductive conditions, and the effective control of regioselectivity was made possible by optimizing the borylating agent and supporting electrolyte. The utility of this approach was further demonstrated in a series of telescoped synthetic sequences, enabling alcohol and carbonyl transposition, formal cross-coupling of alcohols and aldehydes, allylic amination, and vinylogous homologation. This electrosynthetic protocol offers a broadly applicable, modular route to complex allylboron compounds from simple and readily available starting materials, including terpenoid natural products.
Regioselective electrochemical borylation of allylic alcohols, enones, enals, and acrylates is reported, which enables diverse synthetic strategies to upgrade abundant feedstocks and natural products.
期刊介绍:
ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.