MOFs中的Pd─N4位点调节氧化烟气中100%选择性光催化co2到ch4转化的氧还原途径

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wei-Hao Bai,Qi Shao,Ye-Kun Ji,Hao Dong,Xue-Yu Hu,Hao-Ran Xiao,Chao Long
{"title":"MOFs中的Pd─N4位点调节氧化烟气中100%选择性光催化co2到ch4转化的氧还原途径","authors":"Wei-Hao Bai,Qi Shao,Ye-Kun Ji,Hao Dong,Xue-Yu Hu,Hao-Ran Xiao,Chao Long","doi":"10.1002/anie.202513157","DOIUrl":null,"url":null,"abstract":"Direct photocatalytic CO2 reduction in flue gas is significantly challenged by the thermodynamically favored oxygen reduction reaction. While conventional approaches showed promise, the inherent O2 affinity of transition and noble metals prevented full suppression of O2 adsorption and activation, severely constraining the multi-step proton-coupled electron transfers required for the CO2-to-CH4 pathway. We therefore envisioned a CO-mediated oxygen scavenging mechanism by modulating oxygen reduction pathways. Via Pd─N4 site engineering, the resulting Pd/Cu3(HITP)2/TiO2 composite effectively suppressed competitive oxygen reduction reaction, enabling selective CO2-to-CH4 conversion under aerobic conditions. Control experiments and density functional theory calculations revealed that the Pd─N4 sites steered oxygen reduction toward CO-mediated pathways-thermodynamically and kinetically favored over conventional oxygen reduction reaction, thereby mitigating competitive effects and simultaneously purifying the product. Consequently, such composite exhibited complete CH4 selectivity at 6.7 µmol g-1 h-1 under simulated industrial flue gas conditions (15 vol% CO2, 3 vol% O2, 5 vol% H2O, balanced N2). Our work highlights catalytic site modulation and advances a new strategy for photocatalytic CO2 reduction in oxygenated flue gas via pathway-selective oxygen reduction.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"59 1","pages":"e202513157"},"PeriodicalIF":16.9000,"publicationDate":"2025-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pd─N4 Sites in MOFs Modulate Oxygen Reduction Pathways for 100% Selective Photocatalytic CO2-to-CH4 Conversion from Oxygenated Flue Gas.\",\"authors\":\"Wei-Hao Bai,Qi Shao,Ye-Kun Ji,Hao Dong,Xue-Yu Hu,Hao-Ran Xiao,Chao Long\",\"doi\":\"10.1002/anie.202513157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Direct photocatalytic CO2 reduction in flue gas is significantly challenged by the thermodynamically favored oxygen reduction reaction. While conventional approaches showed promise, the inherent O2 affinity of transition and noble metals prevented full suppression of O2 adsorption and activation, severely constraining the multi-step proton-coupled electron transfers required for the CO2-to-CH4 pathway. We therefore envisioned a CO-mediated oxygen scavenging mechanism by modulating oxygen reduction pathways. Via Pd─N4 site engineering, the resulting Pd/Cu3(HITP)2/TiO2 composite effectively suppressed competitive oxygen reduction reaction, enabling selective CO2-to-CH4 conversion under aerobic conditions. Control experiments and density functional theory calculations revealed that the Pd─N4 sites steered oxygen reduction toward CO-mediated pathways-thermodynamically and kinetically favored over conventional oxygen reduction reaction, thereby mitigating competitive effects and simultaneously purifying the product. Consequently, such composite exhibited complete CH4 selectivity at 6.7 µmol g-1 h-1 under simulated industrial flue gas conditions (15 vol% CO2, 3 vol% O2, 5 vol% H2O, balanced N2). Our work highlights catalytic site modulation and advances a new strategy for photocatalytic CO2 reduction in oxygenated flue gas via pathway-selective oxygen reduction.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"59 1\",\"pages\":\"e202513157\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202513157\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202513157","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

烟气中的直接光催化CO2还原受到热力学有利的氧还原反应的极大挑战。虽然传统方法很有前景,但过渡金属和贵金属固有的O2亲和力阻碍了O2吸附和活化的完全抑制,严重限制了co2到ch4途径所需的多步质子耦合电子转移。因此,我们设想通过调节氧还原途径co介导的氧清除机制。通过Pd─N4位点工程,Pd/Cu3(HITP)2/TiO2复合材料有效抑制了竞争性氧还原反应,实现了有氧条件下co2 - ch4的选择性转化。对照实验和密度泛函数理论计算表明,Pd─N4位点将氧还原转向co介导的途径,在热力学和动力学上都优于传统的氧还原反应,从而减轻了竞争效应,同时净化了产物。因此,在模拟工业烟气条件(15 vol% CO2, 3 vol% O2, 5 vol% H2O,平衡N2)下,该复合材料在6.7 μ mol g-1 h-1下表现出完全的CH4选择性。我们的工作重点是催化位点调制,并通过途径选择性氧还原提出了一种光催化氧化烟气中CO2还原的新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pd─N4 Sites in MOFs Modulate Oxygen Reduction Pathways for 100% Selective Photocatalytic CO2-to-CH4 Conversion from Oxygenated Flue Gas.
Direct photocatalytic CO2 reduction in flue gas is significantly challenged by the thermodynamically favored oxygen reduction reaction. While conventional approaches showed promise, the inherent O2 affinity of transition and noble metals prevented full suppression of O2 adsorption and activation, severely constraining the multi-step proton-coupled electron transfers required for the CO2-to-CH4 pathway. We therefore envisioned a CO-mediated oxygen scavenging mechanism by modulating oxygen reduction pathways. Via Pd─N4 site engineering, the resulting Pd/Cu3(HITP)2/TiO2 composite effectively suppressed competitive oxygen reduction reaction, enabling selective CO2-to-CH4 conversion under aerobic conditions. Control experiments and density functional theory calculations revealed that the Pd─N4 sites steered oxygen reduction toward CO-mediated pathways-thermodynamically and kinetically favored over conventional oxygen reduction reaction, thereby mitigating competitive effects and simultaneously purifying the product. Consequently, such composite exhibited complete CH4 selectivity at 6.7 µmol g-1 h-1 under simulated industrial flue gas conditions (15 vol% CO2, 3 vol% O2, 5 vol% H2O, balanced N2). Our work highlights catalytic site modulation and advances a new strategy for photocatalytic CO2 reduction in oxygenated flue gas via pathway-selective oxygen reduction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信