基于变压器的神经网络在深部组织成像中的散射与图像恢复。

IF 9.1 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Xiangcong Xu,Renlong Zhang,Chenggui Luo,Chi Zhang,Yanping Li,Danying Lin,Bin Yu,Liwei Liu,Xiaoyu Weng,Yiping Wang,Lingjie Kong,Jia Li,Junle Qu
{"title":"基于变压器的神经网络在深部组织成像中的散射与图像恢复。","authors":"Xiangcong Xu,Renlong Zhang,Chenggui Luo,Chi Zhang,Yanping Li,Danying Lin,Bin Yu,Liwei Liu,Xiaoyu Weng,Yiping Wang,Lingjie Kong,Jia Li,Junle Qu","doi":"10.1073/pnas.2503576122","DOIUrl":null,"url":null,"abstract":"Imaging biological structures deep inside tissues is crucial but challenging due to common light scattering. This study proposes a multiattention network that directly maps degraded scattering two-photon excitation fluorescence (TPEF) images to high-quality scattering-free images, thereby computationally extending the imaging depth for TPEF without requiring complex optical additions. The model relies solely on simulated data rather than well-registered real data pairs, and is trained to descatter and restore hidden spatial information at greater depths. Quantitative evaluations on simulated fluorescent beads and vasculature show significant performance improvements in peak signal-to-noise ratio (23 to 29 dB) and structural similarity index (23×) compared to the raw data. We also apply the framework to various ex vivo and in vivo experiments, achieving clear visualization of lipid droplets up to a depth of 1,300 μm and of vascular structure and astrocytes up to 950 μm and 500 μm, respectively, in live mouse brains at lower excitation powers.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"129 1","pages":"e2503576122"},"PeriodicalIF":9.1000,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Descattering and image restoration with a transformer-based neural network in deep tissue imaging.\",\"authors\":\"Xiangcong Xu,Renlong Zhang,Chenggui Luo,Chi Zhang,Yanping Li,Danying Lin,Bin Yu,Liwei Liu,Xiaoyu Weng,Yiping Wang,Lingjie Kong,Jia Li,Junle Qu\",\"doi\":\"10.1073/pnas.2503576122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Imaging biological structures deep inside tissues is crucial but challenging due to common light scattering. This study proposes a multiattention network that directly maps degraded scattering two-photon excitation fluorescence (TPEF) images to high-quality scattering-free images, thereby computationally extending the imaging depth for TPEF without requiring complex optical additions. The model relies solely on simulated data rather than well-registered real data pairs, and is trained to descatter and restore hidden spatial information at greater depths. Quantitative evaluations on simulated fluorescent beads and vasculature show significant performance improvements in peak signal-to-noise ratio (23 to 29 dB) and structural similarity index (23×) compared to the raw data. We also apply the framework to various ex vivo and in vivo experiments, achieving clear visualization of lipid droplets up to a depth of 1,300 μm and of vascular structure and astrocytes up to 950 μm and 500 μm, respectively, in live mouse brains at lower excitation powers.\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"129 1\",\"pages\":\"e2503576122\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2503576122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2503576122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

由于常见的光散射,对组织深处的生物结构进行成像是至关重要的,但也具有挑战性。本研究提出了一种多注意力网络,将退化散射双光子激发荧光(TPEF)图像直接映射到高质量的无散射图像,从而在计算上扩展了TPEF的成像深度,而无需复杂的光学添加。该模型完全依赖于模拟数据,而不是经过良好注册的真实数据对,并且经过训练可以在更深的深度散射和恢复隐藏的空间信息。对模拟荧光珠和血管系统的定量评估表明,与原始数据相比,峰值信噪比(23至29 dB)和结构相似性指数(23×)的性能有显著提高。我们还将该框架应用于各种离体和体内实验,在较低的激发功率下,分别实现了1300 μm深度的脂滴和950 μm深度的血管结构和500 μm深度的星形胶质细胞的清晰可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Descattering and image restoration with a transformer-based neural network in deep tissue imaging.
Imaging biological structures deep inside tissues is crucial but challenging due to common light scattering. This study proposes a multiattention network that directly maps degraded scattering two-photon excitation fluorescence (TPEF) images to high-quality scattering-free images, thereby computationally extending the imaging depth for TPEF without requiring complex optical additions. The model relies solely on simulated data rather than well-registered real data pairs, and is trained to descatter and restore hidden spatial information at greater depths. Quantitative evaluations on simulated fluorescent beads and vasculature show significant performance improvements in peak signal-to-noise ratio (23 to 29 dB) and structural similarity index (23×) compared to the raw data. We also apply the framework to various ex vivo and in vivo experiments, achieving clear visualization of lipid droplets up to a depth of 1,300 μm and of vascular structure and astrocytes up to 950 μm and 500 μm, respectively, in live mouse brains at lower excitation powers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信