一种抑制恶性疟原虫蛋白合成的新型抗疟药。

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Patricia Bravo,Eleonora Diamanti,Mostafa M Hamed,Lorenzo Bizzarri,Natalie Wiedemar,Armin Passecker,Nicolas M B Brancucci,Anna Albisetti,Christin Gumpp,Boris Illarionov,Markus Fischer,Matthias Witschel,Tobias Schehl,Hannes Hahne,Pascal Mäser,Matthias Rottmann,Anna K H Hirsch
{"title":"一种抑制恶性疟原虫蛋白合成的新型抗疟药。","authors":"Patricia Bravo,Eleonora Diamanti,Mostafa M Hamed,Lorenzo Bizzarri,Natalie Wiedemar,Armin Passecker,Nicolas M B Brancucci,Anna Albisetti,Christin Gumpp,Boris Illarionov,Markus Fischer,Matthias Witschel,Tobias Schehl,Hannes Hahne,Pascal Mäser,Matthias Rottmann,Anna K H Hirsch","doi":"10.1002/anie.202514085","DOIUrl":null,"url":null,"abstract":"The emergence of drug resistance to nearly all antimalarials following their rollout underscores the need for novel chemotypes with novel modes of action to replenish the antimalarial drug-development pipeline. We identified a novel class of compounds in the antimalarial armory. Compound 31, characterized by a 2-hydroxyphenyl benzamide scaffold, displays potent activity against blood-stage and mature sexual stages of Plasmodium falciparum and no toxicity in human cells. Resistance selection studies with 31 identified a previously unknown point mutation in the P. falciparum multidrug-resistance protein 1 (pfmdr1) gene, for which we confirmed causality by CRISPR/Cas9-based gene editing as the primary mediator of resistance. No cross-resistance toward first-line antimalarials was identified in compound 31-resistant parasites. Proteomics studies indicated that the primary mode of action of 31 is through direct binding to cytosolic ribosomal subunits, thereby inhibiting protein synthesis in the parasite. Taken together, compound 31 is a promising starting point for the development of a next-generation antimalarial.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"1 1","pages":"e202514085"},"PeriodicalIF":16.9000,"publicationDate":"2025-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Antimalarial Agent that Inhibits Protein Synthesis in Plasmodium falciparum.\",\"authors\":\"Patricia Bravo,Eleonora Diamanti,Mostafa M Hamed,Lorenzo Bizzarri,Natalie Wiedemar,Armin Passecker,Nicolas M B Brancucci,Anna Albisetti,Christin Gumpp,Boris Illarionov,Markus Fischer,Matthias Witschel,Tobias Schehl,Hannes Hahne,Pascal Mäser,Matthias Rottmann,Anna K H Hirsch\",\"doi\":\"10.1002/anie.202514085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emergence of drug resistance to nearly all antimalarials following their rollout underscores the need for novel chemotypes with novel modes of action to replenish the antimalarial drug-development pipeline. We identified a novel class of compounds in the antimalarial armory. Compound 31, characterized by a 2-hydroxyphenyl benzamide scaffold, displays potent activity against blood-stage and mature sexual stages of Plasmodium falciparum and no toxicity in human cells. Resistance selection studies with 31 identified a previously unknown point mutation in the P. falciparum multidrug-resistance protein 1 (pfmdr1) gene, for which we confirmed causality by CRISPR/Cas9-based gene editing as the primary mediator of resistance. No cross-resistance toward first-line antimalarials was identified in compound 31-resistant parasites. Proteomics studies indicated that the primary mode of action of 31 is through direct binding to cytosolic ribosomal subunits, thereby inhibiting protein synthesis in the parasite. Taken together, compound 31 is a promising starting point for the development of a next-generation antimalarial.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"1 1\",\"pages\":\"e202514085\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202514085\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202514085","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在推出几乎所有抗疟药物之后,出现了对它们的耐药性,这突出表明需要开发具有新作用模式的新型化学型,以补充抗疟药物开发管道。我们在抗疟药库中发现了一类新的化合物。化合物31以2-羟基苯基苯酰胺支架为特征,对恶性疟原虫血液期和性成熟期表现出强效活性,对人体细胞无毒性。耐药性选择研究发现了恶性疟原虫多药耐药蛋白1 (pfmdr1)基因中一个以前未知的点突变,我们通过基于CRISPR/ cas9的基因编辑证实了其因果关系,作为耐药的主要媒介。化合物31耐药疟原虫未发现对一线抗疟药的交叉耐药。蛋白质组学研究表明,31的主要作用方式是通过直接结合胞质核糖体亚基,从而抑制寄生虫的蛋白质合成。综上所述,化合物31是开发下一代抗疟药的一个有希望的起点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Antimalarial Agent that Inhibits Protein Synthesis in Plasmodium falciparum.
The emergence of drug resistance to nearly all antimalarials following their rollout underscores the need for novel chemotypes with novel modes of action to replenish the antimalarial drug-development pipeline. We identified a novel class of compounds in the antimalarial armory. Compound 31, characterized by a 2-hydroxyphenyl benzamide scaffold, displays potent activity against blood-stage and mature sexual stages of Plasmodium falciparum and no toxicity in human cells. Resistance selection studies with 31 identified a previously unknown point mutation in the P. falciparum multidrug-resistance protein 1 (pfmdr1) gene, for which we confirmed causality by CRISPR/Cas9-based gene editing as the primary mediator of resistance. No cross-resistance toward first-line antimalarials was identified in compound 31-resistant parasites. Proteomics studies indicated that the primary mode of action of 31 is through direct binding to cytosolic ribosomal subunits, thereby inhibiting protein synthesis in the parasite. Taken together, compound 31 is a promising starting point for the development of a next-generation antimalarial.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信