用时域反射法计数悬浮液中的细菌。

IF 4.6 Q1 CHEMISTRY, ANALYTICAL
ACS Measurement Science Au Pub Date : 2025-08-26 eCollection Date: 2025-10-15 DOI:10.1021/acsmeasuresciau.5c00060
Huan Hu, Yili Lu, Robert Horton, Tusheng Ren
{"title":"用时域反射法计数悬浮液中的细菌。","authors":"Huan Hu, Yili Lu, Robert Horton, Tusheng Ren","doi":"10.1021/acsmeasuresciau.5c00060","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial detection techniques, such as bacterial counting, are essential in all aspects of environmental monitoring and analysis. However, the standard plate count method for bacterial enumeration with colony-forming units is time-consuming and labor-intensive. In this study, we present a fast and accurate method to count bacteria cells using the technique of time-domain reflectometry (TDR) based on the electrical properties of bacterial cell suspensions. A series of suspensions with various bacterial concentrations were used as the test materials, and the electrical conductivity (σ<sub>a</sub>) was determined using the TDR method. The TDR measured-σ<sub>a</sub> value was converted to the concentration of bacterial suspension using a pre-established standard curve on three types of bacteria, i.e., <i>Bacillus subtilis</i> (<i>B. subtilis</i>), <i>Pseudomonas fluorescens</i> (<i>P. fluorescens</i>), and <i>Escherichia coli</i> (<i>E. coli</i>). The σ<sub>a</sub> values of suspensions increased exponentially with bacteria concentrations, mainly due to the release of Cl<sup>-</sup> and extracellular polymeric substances from the cells that were electrically conductive. For the three types of bacterial strains, the lower detection limits were 6 log CFU mL<sup>-1</sup> for <i>B. subtilis</i>, and 7 log CFU mL<sup>-1</sup> for <i>P. fluorescens</i> and <i>E. coli</i>. Independent evaluation showed that values from the TDR based method matched well with those obtained with the traditional plate count method, with RMSEs of 0.260, 0.166, and 0.198 log CFU mL<sup>-1</sup> for <i>B. subtilis</i>, <i>P. fluorescens</i>, and <i>E. coli</i>, respectively. The TDR based approach provides a fast and accurate means for detecting bacterial cell numbers in suspensions.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"5 5","pages":"677-686"},"PeriodicalIF":4.6000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12532056/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enumeration of Bacteria in Suspensions Using Time Domain Reflectometry.\",\"authors\":\"Huan Hu, Yili Lu, Robert Horton, Tusheng Ren\",\"doi\":\"10.1021/acsmeasuresciau.5c00060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microbial detection techniques, such as bacterial counting, are essential in all aspects of environmental monitoring and analysis. However, the standard plate count method for bacterial enumeration with colony-forming units is time-consuming and labor-intensive. In this study, we present a fast and accurate method to count bacteria cells using the technique of time-domain reflectometry (TDR) based on the electrical properties of bacterial cell suspensions. A series of suspensions with various bacterial concentrations were used as the test materials, and the electrical conductivity (σ<sub>a</sub>) was determined using the TDR method. The TDR measured-σ<sub>a</sub> value was converted to the concentration of bacterial suspension using a pre-established standard curve on three types of bacteria, i.e., <i>Bacillus subtilis</i> (<i>B. subtilis</i>), <i>Pseudomonas fluorescens</i> (<i>P. fluorescens</i>), and <i>Escherichia coli</i> (<i>E. coli</i>). The σ<sub>a</sub> values of suspensions increased exponentially with bacteria concentrations, mainly due to the release of Cl<sup>-</sup> and extracellular polymeric substances from the cells that were electrically conductive. For the three types of bacterial strains, the lower detection limits were 6 log CFU mL<sup>-1</sup> for <i>B. subtilis</i>, and 7 log CFU mL<sup>-1</sup> for <i>P. fluorescens</i> and <i>E. coli</i>. Independent evaluation showed that values from the TDR based method matched well with those obtained with the traditional plate count method, with RMSEs of 0.260, 0.166, and 0.198 log CFU mL<sup>-1</sup> for <i>B. subtilis</i>, <i>P. fluorescens</i>, and <i>E. coli</i>, respectively. The TDR based approach provides a fast and accurate means for detecting bacterial cell numbers in suspensions.</p>\",\"PeriodicalId\":29800,\"journal\":{\"name\":\"ACS Measurement Science Au\",\"volume\":\"5 5\",\"pages\":\"677-686\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12532056/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Measurement Science Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsmeasuresciau.5c00060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/10/15 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Measurement Science Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsmeasuresciau.5c00060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/15 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

微生物检测技术,如细菌计数,在环境监测和分析的各个方面都是必不可少的。然而,用菌落形成单位进行细菌计数的标准平板计数法是费时费力的。在这项研究中,我们提出了一种基于细菌细胞悬浮液电学特性的时域反射技术(TDR)来快速准确地计数细菌细胞的方法。以不同细菌浓度的悬浮液为实验材料,采用TDR法测定其电导率(σa)。将测定的TDR -σa值用预建立的标准曲线对枯草芽孢杆菌(Bacillus subtilis)、荧光假单胞菌(Pseudomonas fluorescens)和大肠杆菌(Escherichia coli) 3种细菌的浓度进行转换。随着细菌浓度的增加,悬浮液的σa值呈指数增长,这主要是由于细胞内的Cl-和胞外的导电高分子物质的释放。3种细菌的检出下限分别为枯草芽孢杆菌6 log CFU mL-1、荧光假单胞菌和大肠杆菌7 log CFU mL-1。独立评价表明,基于TDR的方法与传统平板计数法的结果吻合良好,枯草芽孢杆菌、荧光杆菌和大肠杆菌的rmse分别为0.260、0.166和0.198 log CFU mL-1。基于TDR的方法为检测悬浮液中的细菌细胞数量提供了一种快速准确的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enumeration of Bacteria in Suspensions Using Time Domain Reflectometry.

Enumeration of Bacteria in Suspensions Using Time Domain Reflectometry.

Enumeration of Bacteria in Suspensions Using Time Domain Reflectometry.

Enumeration of Bacteria in Suspensions Using Time Domain Reflectometry.

Microbial detection techniques, such as bacterial counting, are essential in all aspects of environmental monitoring and analysis. However, the standard plate count method for bacterial enumeration with colony-forming units is time-consuming and labor-intensive. In this study, we present a fast and accurate method to count bacteria cells using the technique of time-domain reflectometry (TDR) based on the electrical properties of bacterial cell suspensions. A series of suspensions with various bacterial concentrations were used as the test materials, and the electrical conductivity (σa) was determined using the TDR method. The TDR measured-σa value was converted to the concentration of bacterial suspension using a pre-established standard curve on three types of bacteria, i.e., Bacillus subtilis (B. subtilis), Pseudomonas fluorescens (P. fluorescens), and Escherichia coli (E. coli). The σa values of suspensions increased exponentially with bacteria concentrations, mainly due to the release of Cl- and extracellular polymeric substances from the cells that were electrically conductive. For the three types of bacterial strains, the lower detection limits were 6 log CFU mL-1 for B. subtilis, and 7 log CFU mL-1 for P. fluorescens and E. coli. Independent evaluation showed that values from the TDR based method matched well with those obtained with the traditional plate count method, with RMSEs of 0.260, 0.166, and 0.198 log CFU mL-1 for B. subtilis, P. fluorescens, and E. coli, respectively. The TDR based approach provides a fast and accurate means for detecting bacterial cell numbers in suspensions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Measurement Science Au
ACS Measurement Science Au 化学计量学-
CiteScore
5.20
自引率
0.00%
发文量
0
期刊介绍: ACS Measurement Science Au is an open access journal that publishes experimental computational or theoretical research in all areas of chemical measurement science. Short letters comprehensive articles reviews and perspectives are welcome on topics that report on any phase of analytical operations including sampling measurement and data analysis. This includes:Chemical Reactions and SelectivityChemometrics and Data ProcessingElectrochemistryElemental and Molecular CharacterizationImagingInstrumentationMass SpectrometryMicroscale and Nanoscale systemsOmics (Genomics Proteomics Metabonomics Metabolomics and Bioinformatics)Sensors and Sensing (Biosensors Chemical Sensors Gas Sensors Intracellular Sensors Single-Molecule Sensors Cell Chips Arrays Microfluidic Devices)SeparationsSpectroscopySurface analysisPapers dealing with established methods need to offer a significantly improved original application of the method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信