用激光衍射精确表征单个微流体液滴。

IF 4.6 Q1 CHEMISTRY, ANALYTICAL
ACS Measurement Science Au Pub Date : 2025-08-29 eCollection Date: 2025-10-15 DOI:10.1021/acsmeasuresciau.5c00041
Shuzo Masui, Yusuke Kanno, Takasi Nisisako
{"title":"用激光衍射精确表征单个微流体液滴。","authors":"Shuzo Masui, Yusuke Kanno, Takasi Nisisako","doi":"10.1021/acsmeasuresciau.5c00041","DOIUrl":null,"url":null,"abstract":"<p><p>The expanding use of microfluidic droplets and particles across disciplines, from biology to materials science, highlights the need for developing precise characterization methods. Conventional particle characterization based on light scattering typically relies on averaged data from multiple particles, which can lead to inaccuracies due to contamination from larger particles. To overcome this issue, we here present a versatile laser diffraction (LD) system for characterizing individual droplets and particles flowing in a poly-(dimethylsiloxane) (PDMS) microfluidic device. Our system, mounted on a commercial inverted microscope, facilitates the simultaneous estimation of both the diameter and the refractive index of microparticles and droplets of size 20-50 μm. The LD system captures the angular distribution of scattered light from individual droplets as they pass through the PDMS microfluidic channels. Validation experiments were performed using liquid paraffin with varying refractive indices, oil-in-water (O/W) and water-in-oil (W/O) droplets, and size-certified polystyrene beads. Results showed high accuracy, with mean diameter estimation errors under 5% and refractive index estimation errors <0.5%. This adaptable characterization system can be combined with various microfluidic systems for droplet and particle generation, mixing, and sorting, offering broad potential for applications in multiple research domains.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"5 5","pages":"647-655"},"PeriodicalIF":4.6000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12532057/pdf/","citationCount":"0","resultStr":"{\"title\":\"Precise Characterization of Individual Microfluidic Droplets Using Laser Diffraction.\",\"authors\":\"Shuzo Masui, Yusuke Kanno, Takasi Nisisako\",\"doi\":\"10.1021/acsmeasuresciau.5c00041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The expanding use of microfluidic droplets and particles across disciplines, from biology to materials science, highlights the need for developing precise characterization methods. Conventional particle characterization based on light scattering typically relies on averaged data from multiple particles, which can lead to inaccuracies due to contamination from larger particles. To overcome this issue, we here present a versatile laser diffraction (LD) system for characterizing individual droplets and particles flowing in a poly-(dimethylsiloxane) (PDMS) microfluidic device. Our system, mounted on a commercial inverted microscope, facilitates the simultaneous estimation of both the diameter and the refractive index of microparticles and droplets of size 20-50 μm. The LD system captures the angular distribution of scattered light from individual droplets as they pass through the PDMS microfluidic channels. Validation experiments were performed using liquid paraffin with varying refractive indices, oil-in-water (O/W) and water-in-oil (W/O) droplets, and size-certified polystyrene beads. Results showed high accuracy, with mean diameter estimation errors under 5% and refractive index estimation errors <0.5%. This adaptable characterization system can be combined with various microfluidic systems for droplet and particle generation, mixing, and sorting, offering broad potential for applications in multiple research domains.</p>\",\"PeriodicalId\":29800,\"journal\":{\"name\":\"ACS Measurement Science Au\",\"volume\":\"5 5\",\"pages\":\"647-655\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12532057/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Measurement Science Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsmeasuresciau.5c00041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/10/15 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Measurement Science Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsmeasuresciau.5c00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/15 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

从生物学到材料科学,微流体液滴和颗粒在各个学科的广泛使用,突出了开发精确表征方法的必要性。传统的基于光散射的颗粒表征通常依赖于来自多个颗粒的平均数据,这可能导致由于较大颗粒的污染而导致不准确。为了克服这个问题,我们在这里提出了一种多功能激光衍射(LD)系统,用于表征在聚二甲基硅氧烷(PDMS)微流体装置中流动的单个液滴和颗粒。我们的系统安装在商用倒置显微镜上,可以同时估计尺寸为20-50 μm的微粒和液滴的直径和折射率。当单个液滴通过PDMS微流体通道时,LD系统捕获散射光的角分布。验证实验采用不同折射率的液体石蜡、油包水(O/W)和油包水(W/O)液滴以及尺寸认证的聚苯乙烯微珠进行。结果表明,直径估计误差在5%以内,折射率估计误差在5%以内,精度较高
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Precise Characterization of Individual Microfluidic Droplets Using Laser Diffraction.

The expanding use of microfluidic droplets and particles across disciplines, from biology to materials science, highlights the need for developing precise characterization methods. Conventional particle characterization based on light scattering typically relies on averaged data from multiple particles, which can lead to inaccuracies due to contamination from larger particles. To overcome this issue, we here present a versatile laser diffraction (LD) system for characterizing individual droplets and particles flowing in a poly-(dimethylsiloxane) (PDMS) microfluidic device. Our system, mounted on a commercial inverted microscope, facilitates the simultaneous estimation of both the diameter and the refractive index of microparticles and droplets of size 20-50 μm. The LD system captures the angular distribution of scattered light from individual droplets as they pass through the PDMS microfluidic channels. Validation experiments were performed using liquid paraffin with varying refractive indices, oil-in-water (O/W) and water-in-oil (W/O) droplets, and size-certified polystyrene beads. Results showed high accuracy, with mean diameter estimation errors under 5% and refractive index estimation errors <0.5%. This adaptable characterization system can be combined with various microfluidic systems for droplet and particle generation, mixing, and sorting, offering broad potential for applications in multiple research domains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Measurement Science Au
ACS Measurement Science Au 化学计量学-
CiteScore
5.20
自引率
0.00%
发文量
0
期刊介绍: ACS Measurement Science Au is an open access journal that publishes experimental computational or theoretical research in all areas of chemical measurement science. Short letters comprehensive articles reviews and perspectives are welcome on topics that report on any phase of analytical operations including sampling measurement and data analysis. This includes:Chemical Reactions and SelectivityChemometrics and Data ProcessingElectrochemistryElemental and Molecular CharacterizationImagingInstrumentationMass SpectrometryMicroscale and Nanoscale systemsOmics (Genomics Proteomics Metabonomics Metabolomics and Bioinformatics)Sensors and Sensing (Biosensors Chemical Sensors Gas Sensors Intracellular Sensors Single-Molecule Sensors Cell Chips Arrays Microfluidic Devices)SeparationsSpectroscopySurface analysisPapers dealing with established methods need to offer a significantly improved original application of the method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信