面向实际量子计算处理器的资源虚拟化、硬件感知的量子编译框架。

IF 10.7 1区 综合性期刊 Q1 Multidisciplinary
Research Pub Date : 2025-10-16 eCollection Date: 2025-01-01 DOI:10.34133/research.0947
Hong-Ze Xu, Xu-Dan Chai, Meng-Jun Hu, Zheng-An Wang, Yu-Long Feng, Yu Chen, Xinpeng Zhang, Jingbo Wang, Wei-Feng Zhuang, Yu-Xin Jin, Yirong Jin, Haifeng Yu, Heng Fan, Dong E Liu
{"title":"面向实际量子计算处理器的资源虚拟化、硬件感知的量子编译框架。","authors":"Hong-Ze Xu, Xu-Dan Chai, Meng-Jun Hu, Zheng-An Wang, Yu-Long Feng, Yu Chen, Xinpeng Zhang, Jingbo Wang, Wei-Feng Zhuang, Yu-Xin Jin, Yirong Jin, Haifeng Yu, Heng Fan, Dong E Liu","doi":"10.34133/research.0947","DOIUrl":null,"url":null,"abstract":"<p><p>As quantum computing systems continue to scale up and become more clustered, efficiently compiling user quantum programs into high-fidelity executable sequences on real hardware remains a key challenge for current quantum compilation systems. In this study, we introduce a system-software framework that integrates resource virtualization and hardware-aware compilation for real quantum computing processors, termed QSteed. QSteed virtualizes quantum processors through a 4-layer abstraction hierarchy comprising the real quantum processing unit (QPU), standard QPU (StdQPU), substructure of the QPU (SubQPU), and virtual QPU (VQPU). These abstractions, together with calibration data, device topology, and noise descriptors, are maintained in a dedicated database to enable unified and fine-grained management across superconducting quantum platforms. At run time, the modular compiler queries the database to match each incoming circuit with the most suitable VQPU, after which it confines layout, routing, gate resynthesis, and noise-adaptive optimizations to that virtual subregion. The complete stack has been deployed on the Quafu superconducting cluster, where experimental runs confirm the correctness of the virtualization model and the efficacy of the compiler without requiring modifications to user code. By integrating resource virtualization with a select-then-compile workflow, QSteed demonstrates a robust architecture for compiling programs on noisy superconducting processors. This architectural approach offers a promising path toward efficient compilation needs across various superconducting quantum computing platforms in the noisy intermediate-scale quantum era.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0947"},"PeriodicalIF":10.7000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12528855/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Resource-Virtualized and Hardware-Aware Quantum Compilation Framework for Real Quantum Computing Processors.\",\"authors\":\"Hong-Ze Xu, Xu-Dan Chai, Meng-Jun Hu, Zheng-An Wang, Yu-Long Feng, Yu Chen, Xinpeng Zhang, Jingbo Wang, Wei-Feng Zhuang, Yu-Xin Jin, Yirong Jin, Haifeng Yu, Heng Fan, Dong E Liu\",\"doi\":\"10.34133/research.0947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As quantum computing systems continue to scale up and become more clustered, efficiently compiling user quantum programs into high-fidelity executable sequences on real hardware remains a key challenge for current quantum compilation systems. In this study, we introduce a system-software framework that integrates resource virtualization and hardware-aware compilation for real quantum computing processors, termed QSteed. QSteed virtualizes quantum processors through a 4-layer abstraction hierarchy comprising the real quantum processing unit (QPU), standard QPU (StdQPU), substructure of the QPU (SubQPU), and virtual QPU (VQPU). These abstractions, together with calibration data, device topology, and noise descriptors, are maintained in a dedicated database to enable unified and fine-grained management across superconducting quantum platforms. At run time, the modular compiler queries the database to match each incoming circuit with the most suitable VQPU, after which it confines layout, routing, gate resynthesis, and noise-adaptive optimizations to that virtual subregion. The complete stack has been deployed on the Quafu superconducting cluster, where experimental runs confirm the correctness of the virtualization model and the efficacy of the compiler without requiring modifications to user code. By integrating resource virtualization with a select-then-compile workflow, QSteed demonstrates a robust architecture for compiling programs on noisy superconducting processors. This architectural approach offers a promising path toward efficient compilation needs across various superconducting quantum computing platforms in the noisy intermediate-scale quantum era.</p>\",\"PeriodicalId\":21120,\"journal\":{\"name\":\"Research\",\"volume\":\"8 \",\"pages\":\"0947\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12528855/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.34133/research.0947\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0947","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

随着量子计算系统的不断扩展和集群化,在真实硬件上将用户量子程序高效地编译成高保真的可执行序列仍然是当前量子编译系统面临的一个关键挑战。在这项研究中,我们介绍了一个系统软件框架,集成了资源虚拟化和硬件感知编译的真实量子计算处理器,称为QSteed。QSteed通过4层抽象层次来虚拟化量子处理器,包括实量子处理单元(QPU)、标准QPU (StdQPU)、QPU的子结构(SubQPU)和虚拟QPU (VQPU)。这些抽象与校准数据、器件拓扑和噪声描述符一起保存在专用数据库中,以便跨超导量子平台进行统一和细粒度的管理。在运行时,模块化编译器查询数据库,将每个输入电路与最合适的VQPU匹配,然后将布局、路由、栅极重新合成和噪声自适应优化限制在该虚拟子区域。完整的堆栈已部署在Quafu超导集群上,实验运行证实了虚拟化模型的正确性和编译器的有效性,而无需修改用户代码。通过将资源虚拟化与选择-然后编译工作流集成,QSteed展示了在嘈杂的超导处理器上编译程序的健壮架构。在嘈杂的中等规模量子时代,这种架构方法为实现各种超导量子计算平台的高效编译需求提供了一条有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Resource-Virtualized and Hardware-Aware Quantum Compilation Framework for Real Quantum Computing Processors.

As quantum computing systems continue to scale up and become more clustered, efficiently compiling user quantum programs into high-fidelity executable sequences on real hardware remains a key challenge for current quantum compilation systems. In this study, we introduce a system-software framework that integrates resource virtualization and hardware-aware compilation for real quantum computing processors, termed QSteed. QSteed virtualizes quantum processors through a 4-layer abstraction hierarchy comprising the real quantum processing unit (QPU), standard QPU (StdQPU), substructure of the QPU (SubQPU), and virtual QPU (VQPU). These abstractions, together with calibration data, device topology, and noise descriptors, are maintained in a dedicated database to enable unified and fine-grained management across superconducting quantum platforms. At run time, the modular compiler queries the database to match each incoming circuit with the most suitable VQPU, after which it confines layout, routing, gate resynthesis, and noise-adaptive optimizations to that virtual subregion. The complete stack has been deployed on the Quafu superconducting cluster, where experimental runs confirm the correctness of the virtualization model and the efficacy of the compiler without requiring modifications to user code. By integrating resource virtualization with a select-then-compile workflow, QSteed demonstrates a robust architecture for compiling programs on noisy superconducting processors. This architectural approach offers a promising path toward efficient compilation needs across various superconducting quantum computing platforms in the noisy intermediate-scale quantum era.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Research
Research Multidisciplinary-Multidisciplinary
CiteScore
13.40
自引率
3.60%
发文量
0
审稿时长
14 weeks
期刊介绍: Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe. Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信