Martine Van Puyvelde, Nicholas H van den Berg, Lara Stas, Perseverence Savieri, Hortense Corlùy, Jeroen Van Cutsem, Xavier Neyt, Guido Simonelli, Nathalie Pattyn
{"title":"超越实验室外衣:空间生命科学的方法论挑战。","authors":"Martine Van Puyvelde, Nicholas H van den Berg, Lara Stas, Perseverence Savieri, Hortense Corlùy, Jeroen Van Cutsem, Xavier Neyt, Guido Simonelli, Nathalie Pattyn","doi":"10.3389/fphys.2025.1663701","DOIUrl":null,"url":null,"abstract":"<p><p>As plans for deep space and long-duration missions advance, research in space and space-analog environments is becoming an urgent scientific priority. However, this type of fieldwork poses a unique set of challenges. The development of research methodologies and designs cannot rely on broad evidence base and thus requires scientific judgment and multidisciplinary psychophysiological expertise. Most studies comprise small samples, often lack control groups, sex differences have seldom been directly tested in this area and inter-individual variability is prevalent in this population. Moreover, this research domain is characterized by several exceptional factors that must be addressed. The target population is highly trained and not representative of the general population, demanding adapted study designs and highly sensitive and operationally relevant research tools. To avoid overburdening the already heavy operational schedules of this population, a careful and feasible balance must be established between scientific data quality and acceptable monitoring load. Furthermore, several issues of location, timing, and type of baseline measures must be explicitly considered, while long-term follow-up designs are necessary to assess both recovery and persistent post-mission effects. Major space agencies have indeed identified methodological issues as a knowledge gap in this area. In this review, we provide an overview of these methodological challenges unique to space life sciences and offer solutions where possible. We argue that space research remains feasible despite these constraints, but only when it is approached with the understanding that such fieldwork often requires fundamentally different methods than traditional laboratory science.</p>","PeriodicalId":12477,"journal":{"name":"Frontiers in Physiology","volume":"16 ","pages":"1663701"},"PeriodicalIF":3.2000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12532382/pdf/","citationCount":"0","resultStr":"{\"title\":\"Beyond the lab coat: methodological challenges in space life sciences.\",\"authors\":\"Martine Van Puyvelde, Nicholas H van den Berg, Lara Stas, Perseverence Savieri, Hortense Corlùy, Jeroen Van Cutsem, Xavier Neyt, Guido Simonelli, Nathalie Pattyn\",\"doi\":\"10.3389/fphys.2025.1663701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As plans for deep space and long-duration missions advance, research in space and space-analog environments is becoming an urgent scientific priority. However, this type of fieldwork poses a unique set of challenges. The development of research methodologies and designs cannot rely on broad evidence base and thus requires scientific judgment and multidisciplinary psychophysiological expertise. Most studies comprise small samples, often lack control groups, sex differences have seldom been directly tested in this area and inter-individual variability is prevalent in this population. Moreover, this research domain is characterized by several exceptional factors that must be addressed. The target population is highly trained and not representative of the general population, demanding adapted study designs and highly sensitive and operationally relevant research tools. To avoid overburdening the already heavy operational schedules of this population, a careful and feasible balance must be established between scientific data quality and acceptable monitoring load. Furthermore, several issues of location, timing, and type of baseline measures must be explicitly considered, while long-term follow-up designs are necessary to assess both recovery and persistent post-mission effects. Major space agencies have indeed identified methodological issues as a knowledge gap in this area. In this review, we provide an overview of these methodological challenges unique to space life sciences and offer solutions where possible. We argue that space research remains feasible despite these constraints, but only when it is approached with the understanding that such fieldwork often requires fundamentally different methods than traditional laboratory science.</p>\",\"PeriodicalId\":12477,\"journal\":{\"name\":\"Frontiers in Physiology\",\"volume\":\"16 \",\"pages\":\"1663701\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12532382/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fphys.2025.1663701\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fphys.2025.1663701","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Beyond the lab coat: methodological challenges in space life sciences.
As plans for deep space and long-duration missions advance, research in space and space-analog environments is becoming an urgent scientific priority. However, this type of fieldwork poses a unique set of challenges. The development of research methodologies and designs cannot rely on broad evidence base and thus requires scientific judgment and multidisciplinary psychophysiological expertise. Most studies comprise small samples, often lack control groups, sex differences have seldom been directly tested in this area and inter-individual variability is prevalent in this population. Moreover, this research domain is characterized by several exceptional factors that must be addressed. The target population is highly trained and not representative of the general population, demanding adapted study designs and highly sensitive and operationally relevant research tools. To avoid overburdening the already heavy operational schedules of this population, a careful and feasible balance must be established between scientific data quality and acceptable monitoring load. Furthermore, several issues of location, timing, and type of baseline measures must be explicitly considered, while long-term follow-up designs are necessary to assess both recovery and persistent post-mission effects. Major space agencies have indeed identified methodological issues as a knowledge gap in this area. In this review, we provide an overview of these methodological challenges unique to space life sciences and offer solutions where possible. We argue that space research remains feasible despite these constraints, but only when it is approached with the understanding that such fieldwork often requires fundamentally different methods than traditional laboratory science.
期刊介绍:
Frontiers in Physiology is a leading journal in its field, publishing rigorously peer-reviewed research on the physiology of living systems, from the subcellular and molecular domains to the intact organism, and its interaction with the environment. Field Chief Editor George E. Billman at the Ohio State University Columbus is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.