Seyed Arash Ghoreishi , Giovanni Scala , Renato Renner , Letícia Lira Tacca , Jan Bouda , Stephen Patrick Walborn , Marcin Pawłowski
{"title":"安全通信的未来:量子密钥分发中的设备独立性","authors":"Seyed Arash Ghoreishi , Giovanni Scala , Renato Renner , Letícia Lira Tacca , Jan Bouda , Stephen Patrick Walborn , Marcin Pawłowski","doi":"10.1016/j.physrep.2025.09.006","DOIUrl":null,"url":null,"abstract":"<div><div>In the ever-evolving landscape of quantum cryptography, Device-independent Quantum Key Distribution (DI-QKD) stands out for its unique approach to ensuring security based not on the trustworthiness of the devices but on nonlocal correlations. Beginning with a contextual understanding of modern cryptographic security and the limitations of standard quantum key distribution methods, this review explores the pivotal role of nonclassicality and the challenges posed by various experimental loopholes for DI-QKD. Various protocols, security against individual, collective and coherent attacks, and the concept of self-testing are also examined, as well as the entropy accumulation theorem, and additional mathematical methods in formulating advanced security proofs. In addition, the burgeoning field of semi-device-independent models (measurement DI-QKD, Receiver DI-QKD, and One-sided DI-QKD) is also analyzed. The practical aspects are discussed through a detailed overview of experimental progress and the open challenges towards the commercial deployment in the future of secure communications.</div></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1149 ","pages":"Pages 1-97"},"PeriodicalIF":29.5000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The future of secure communications: Device independence in quantum key distribution\",\"authors\":\"Seyed Arash Ghoreishi , Giovanni Scala , Renato Renner , Letícia Lira Tacca , Jan Bouda , Stephen Patrick Walborn , Marcin Pawłowski\",\"doi\":\"10.1016/j.physrep.2025.09.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the ever-evolving landscape of quantum cryptography, Device-independent Quantum Key Distribution (DI-QKD) stands out for its unique approach to ensuring security based not on the trustworthiness of the devices but on nonlocal correlations. Beginning with a contextual understanding of modern cryptographic security and the limitations of standard quantum key distribution methods, this review explores the pivotal role of nonclassicality and the challenges posed by various experimental loopholes for DI-QKD. Various protocols, security against individual, collective and coherent attacks, and the concept of self-testing are also examined, as well as the entropy accumulation theorem, and additional mathematical methods in formulating advanced security proofs. In addition, the burgeoning field of semi-device-independent models (measurement DI-QKD, Receiver DI-QKD, and One-sided DI-QKD) is also analyzed. The practical aspects are discussed through a detailed overview of experimental progress and the open challenges towards the commercial deployment in the future of secure communications.</div></div>\",\"PeriodicalId\":404,\"journal\":{\"name\":\"Physics Reports\",\"volume\":\"1149 \",\"pages\":\"Pages 1-97\"},\"PeriodicalIF\":29.5000,\"publicationDate\":\"2025-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Reports\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0370157325002558\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Reports","FirstCategoryId":"4","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370157325002558","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
The future of secure communications: Device independence in quantum key distribution
In the ever-evolving landscape of quantum cryptography, Device-independent Quantum Key Distribution (DI-QKD) stands out for its unique approach to ensuring security based not on the trustworthiness of the devices but on nonlocal correlations. Beginning with a contextual understanding of modern cryptographic security and the limitations of standard quantum key distribution methods, this review explores the pivotal role of nonclassicality and the challenges posed by various experimental loopholes for DI-QKD. Various protocols, security against individual, collective and coherent attacks, and the concept of self-testing are also examined, as well as the entropy accumulation theorem, and additional mathematical methods in formulating advanced security proofs. In addition, the burgeoning field of semi-device-independent models (measurement DI-QKD, Receiver DI-QKD, and One-sided DI-QKD) is also analyzed. The practical aspects are discussed through a detailed overview of experimental progress and the open challenges towards the commercial deployment in the future of secure communications.
期刊介绍:
Physics Reports keeps the active physicist up-to-date on developments in a wide range of topics by publishing timely reviews which are more extensive than just literature surveys but normally less than a full monograph. Each report deals with one specific subject and is generally published in a separate volume. These reviews are specialist in nature but contain enough introductory material to make the main points intelligible to a non-specialist. The reader will not only be able to distinguish important developments and trends in physics but will also find a sufficient number of references to the original literature.