Xinyu Zhang , Jun Tang , Bin Yao , Jiajun Zhu , Wulin Yang , Lingping Zhou , Licheng Tang , Zaifang Yuan , Licai Fu
{"title":"抗钙钛矿卤化物Li2(OH)Br1-xClx作为高温电池的高性能电解质","authors":"Xinyu Zhang , Jun Tang , Bin Yao , Jiajun Zhu , Wulin Yang , Lingping Zhou , Licheng Tang , Zaifang Yuan , Licai Fu","doi":"10.1016/j.est.2025.118914","DOIUrl":null,"url":null,"abstract":"<div><div>Anti-perovskites halide salts Li<sub>2</sub>(OH)X (X = Halogen) are widely investigated as solid-state electrolytes. Owing to their low melting points and excellent thermal stability, the Li<sub>2</sub>(OH)X has been applied in the thermal battery electrolytes. Li<sub>2</sub>(OH)Br<sub>1-x</sub>Cl<sub>x</sub> presented low melting points (250–260 °C), outstanding thermal stability (<5 % mass loss at 550 °C), superior ionic conductivity (2.06 S cm<sup>−1</sup> at 500 °C for Li<sub>2</sub>(OH)Br<sub>0.85</sub>Cl<sub>0.15</sub> composite electrolytes), and high decomposition voltages. Cl<sup>−</sup> doping further optimizes the material's electrochemical properties: the Li-B| Li<sub>2</sub>(OH)Br<sub>0.85</sub>Cl<sub>0.15</sub>|Cu<sub>2</sub>O cell provides a high voltage plateau of 1.97 V and a high specific capacity of 356 mAh g<sup>−1</sup> at 300 °C; compared to the common low-melting-point electrolyte LiF-LiCl-KBr-CsCl in thermal batteries, it delivers a specific discharge capacity 190 % higher under the same testing conditions (400 °C, 100 mA cm<sup>−2</sup>); compared to Li<sub>2</sub>(OH)Br, it delivers a 29.3 % reduction in pulsed internal resistance and a 36.7 % increase in decomposition voltage at 500 °C. This work not only explores the high-temperature electrochemical properties of anti-perovskite halide salts and broadens their application scope but also introduces a novel low-melting-point molten salt into the thermal battery field, holding promise for resolving the long-standing challenge of thermal batteries' inability to achieve high-current discharge at low temperatures.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"139 ","pages":"Article 118914"},"PeriodicalIF":8.9000,"publicationDate":"2025-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anti-perovskite halide Li2(OH)Br1-xClx as a high-performance electrolyte for high-temperature batteries\",\"authors\":\"Xinyu Zhang , Jun Tang , Bin Yao , Jiajun Zhu , Wulin Yang , Lingping Zhou , Licheng Tang , Zaifang Yuan , Licai Fu\",\"doi\":\"10.1016/j.est.2025.118914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Anti-perovskites halide salts Li<sub>2</sub>(OH)X (X = Halogen) are widely investigated as solid-state electrolytes. Owing to their low melting points and excellent thermal stability, the Li<sub>2</sub>(OH)X has been applied in the thermal battery electrolytes. Li<sub>2</sub>(OH)Br<sub>1-x</sub>Cl<sub>x</sub> presented low melting points (250–260 °C), outstanding thermal stability (<5 % mass loss at 550 °C), superior ionic conductivity (2.06 S cm<sup>−1</sup> at 500 °C for Li<sub>2</sub>(OH)Br<sub>0.85</sub>Cl<sub>0.15</sub> composite electrolytes), and high decomposition voltages. Cl<sup>−</sup> doping further optimizes the material's electrochemical properties: the Li-B| Li<sub>2</sub>(OH)Br<sub>0.85</sub>Cl<sub>0.15</sub>|Cu<sub>2</sub>O cell provides a high voltage plateau of 1.97 V and a high specific capacity of 356 mAh g<sup>−1</sup> at 300 °C; compared to the common low-melting-point electrolyte LiF-LiCl-KBr-CsCl in thermal batteries, it delivers a specific discharge capacity 190 % higher under the same testing conditions (400 °C, 100 mA cm<sup>−2</sup>); compared to Li<sub>2</sub>(OH)Br, it delivers a 29.3 % reduction in pulsed internal resistance and a 36.7 % increase in decomposition voltage at 500 °C. This work not only explores the high-temperature electrochemical properties of anti-perovskite halide salts and broadens their application scope but also introduces a novel low-melting-point molten salt into the thermal battery field, holding promise for resolving the long-standing challenge of thermal batteries' inability to achieve high-current discharge at low temperatures.</div></div>\",\"PeriodicalId\":15942,\"journal\":{\"name\":\"Journal of energy storage\",\"volume\":\"139 \",\"pages\":\"Article 118914\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of energy storage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352152X25036278\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X25036278","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
反钙钛矿卤化物盐Li2(OH)X (X = Halogen)作为固态电解质被广泛研究。Li2(OH)X由于其低熔点和优异的热稳定性,被广泛应用于热电池电解质中。Li2(OH)Br1-xClx具有低熔点(250-260°C)、优异的热稳定性(550°C时质量损失<; 5%)、优异的离子电导率(500°C时Li2(OH)Br0.85Cl0.15复合电解质的离子电导率为2.06 S cm−1)和高分解电压。Cl−掺杂进一步优化了材料的电化学性能:Li-B| Li2(OH)Br0.85Cl0.15|Cu2O电池在300°C时具有1.97 V的高电压平台和356 mAh g−1的高比容量;与热电池中常见的低熔点电解质LiF-LiCl-KBr-CsCl相比,在相同的测试条件下(400°C, 100 mA cm - 2),它的比放电容量提高了190%;与Li2(OH)Br相比,在500℃下,它的脉冲内阻降低了29.3%,分解电压提高了36.7%。本研究不仅探索了抗钙钛矿卤化物盐的高温电化学性能,拓宽了其应用范围,而且将一种新型的低熔点熔盐引入热电池领域,有望解决热电池长期以来无法在低温下实现大电流放电的难题。
Anti-perovskite halide Li2(OH)Br1-xClx as a high-performance electrolyte for high-temperature batteries
Anti-perovskites halide salts Li2(OH)X (X = Halogen) are widely investigated as solid-state electrolytes. Owing to their low melting points and excellent thermal stability, the Li2(OH)X has been applied in the thermal battery electrolytes. Li2(OH)Br1-xClx presented low melting points (250–260 °C), outstanding thermal stability (<5 % mass loss at 550 °C), superior ionic conductivity (2.06 S cm−1 at 500 °C for Li2(OH)Br0.85Cl0.15 composite electrolytes), and high decomposition voltages. Cl− doping further optimizes the material's electrochemical properties: the Li-B| Li2(OH)Br0.85Cl0.15|Cu2O cell provides a high voltage plateau of 1.97 V and a high specific capacity of 356 mAh g−1 at 300 °C; compared to the common low-melting-point electrolyte LiF-LiCl-KBr-CsCl in thermal batteries, it delivers a specific discharge capacity 190 % higher under the same testing conditions (400 °C, 100 mA cm−2); compared to Li2(OH)Br, it delivers a 29.3 % reduction in pulsed internal resistance and a 36.7 % increase in decomposition voltage at 500 °C. This work not only explores the high-temperature electrochemical properties of anti-perovskite halide salts and broadens their application scope but also introduces a novel low-melting-point molten salt into the thermal battery field, holding promise for resolving the long-standing challenge of thermal batteries' inability to achieve high-current discharge at low temperatures.
期刊介绍:
Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.