储氢用LiBH3钙钛矿物理性质的从头算研究

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS
Aya Chelh, Boutaina Akenoun, Smahane Dahbi, Hamid Ez-Zahraouy
{"title":"储氢用LiBH3钙钛矿物理性质的从头算研究","authors":"Aya Chelh,&nbsp;Boutaina Akenoun,&nbsp;Smahane Dahbi,&nbsp;Hamid Ez-Zahraouy","doi":"10.1016/j.est.2025.118927","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a comprehensive ab initio investigation of novel hydride perovskites LibO<span><math><msub><mrow></mrow><mrow><mn>3</mn><mo>−</mo><mi>x</mi></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span> (x <span><math><mo>=</mo></math></span> 0, 1, 2, 3) was conducted using density functional theory. Their structural, mechanical, thermal, electronic, and optical properties were systematically explored, along with their hydrogen storage capacity and potential as efficient solid-state hydrogen storage materials. Following oxygen-to-hydrogen substitution, LiBH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> is also examined under 5% and 10% tensile strain to enhance its hydrogen desorption behavior. The complete hydrogenated compound, LiBH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, exhibits a high gravimetric hydrogen storage capacity of 14.55 wt% and a desorption temperature of 362.10 K, which is higher than that of many conventional hydrides. However, this is achieved at the cost of thermal and mechanical stability. The application of strain effectively lowers the desorption temperature to 343.23 K at 5% strain and 299.93 K at 10% strain, enabling more practical hydrogen release. These findings highlight strain-engineered LiBH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>-based perovskites as tunable, cost-effective materials for hydrogen storage and motivate future experimental validation for clean energy applications.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"139 ","pages":"Article 118927"},"PeriodicalIF":8.9000,"publicationDate":"2025-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ab-initio investigation of the physical properties of LiBH3 perovskite for hydrogen storage applications\",\"authors\":\"Aya Chelh,&nbsp;Boutaina Akenoun,&nbsp;Smahane Dahbi,&nbsp;Hamid Ez-Zahraouy\",\"doi\":\"10.1016/j.est.2025.118927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, a comprehensive ab initio investigation of novel hydride perovskites LibO<span><math><msub><mrow></mrow><mrow><mn>3</mn><mo>−</mo><mi>x</mi></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span> (x <span><math><mo>=</mo></math></span> 0, 1, 2, 3) was conducted using density functional theory. Their structural, mechanical, thermal, electronic, and optical properties were systematically explored, along with their hydrogen storage capacity and potential as efficient solid-state hydrogen storage materials. Following oxygen-to-hydrogen substitution, LiBH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> is also examined under 5% and 10% tensile strain to enhance its hydrogen desorption behavior. The complete hydrogenated compound, LiBH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, exhibits a high gravimetric hydrogen storage capacity of 14.55 wt% and a desorption temperature of 362.10 K, which is higher than that of many conventional hydrides. However, this is achieved at the cost of thermal and mechanical stability. The application of strain effectively lowers the desorption temperature to 343.23 K at 5% strain and 299.93 K at 10% strain, enabling more practical hydrogen release. These findings highlight strain-engineered LiBH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>-based perovskites as tunable, cost-effective materials for hydrogen storage and motivate future experimental validation for clean energy applications.</div></div>\",\"PeriodicalId\":15942,\"journal\":{\"name\":\"Journal of energy storage\",\"volume\":\"139 \",\"pages\":\"Article 118927\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of energy storage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352152X25036400\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X25036400","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本文利用密度泛函理论对新型氢化物钙钛矿LibO3−xHx (x = 0,1,2,3)进行了全面的从头算研究。系统地探索了它们的结构、机械、热、电子和光学性质,以及它们的储氢能力和作为高效固态储氢材料的潜力。在氧-氢取代之后,LiBH3在5%和10%的拉伸应变下也进行了测试,以增强其氢的脱附行为。完全氢化化合物LiBH3具有14.55 wt%的高储氢量和362.10 K的脱附温度,高于许多传统氢化物。然而,这是以热稳定性和机械稳定性为代价的。应变的施加有效地降低了解吸温度,5%应变下为343.23 K, 10%应变下为299.93 K,实现了更实际的氢释放。这些发现突出了应变工程libh3基钙钛矿作为可调的、具有成本效益的储氢材料,并激发了未来清洁能源应用的实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ab-initio investigation of the physical properties of LiBH3 perovskite for hydrogen storage applications
In this paper, a comprehensive ab initio investigation of novel hydride perovskites LibO3xHx (x = 0, 1, 2, 3) was conducted using density functional theory. Their structural, mechanical, thermal, electronic, and optical properties were systematically explored, along with their hydrogen storage capacity and potential as efficient solid-state hydrogen storage materials. Following oxygen-to-hydrogen substitution, LiBH3 is also examined under 5% and 10% tensile strain to enhance its hydrogen desorption behavior. The complete hydrogenated compound, LiBH3, exhibits a high gravimetric hydrogen storage capacity of 14.55 wt% and a desorption temperature of 362.10 K, which is higher than that of many conventional hydrides. However, this is achieved at the cost of thermal and mechanical stability. The application of strain effectively lowers the desorption temperature to 343.23 K at 5% strain and 299.93 K at 10% strain, enabling more practical hydrogen release. These findings highlight strain-engineered LiBH3-based perovskites as tunable, cost-effective materials for hydrogen storage and motivate future experimental validation for clean energy applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信