S. Lorenzi , D. Asperti , M. Cabrini , L. Nani , M. Lombardi , I. Lagalante , A. Martucci , T. Pastore
{"title":"宏观和微观组织对lpbf加工AlSi9Cu3合金力学和腐蚀行为的影响","authors":"S. Lorenzi , D. Asperti , M. Cabrini , L. Nani , M. Lombardi , I. Lagalante , A. Martucci , T. Pastore","doi":"10.1016/j.corsci.2025.113410","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid solidification associated with laser powder bed fusion (LPBF) promotes oversaturation of the α-Al matrix with alloying elements and redistribution of second phases, resulting in a fine-grained melt pool microstructure that strongly affects corrosion behaviour. This work investigates the corrosion response of LPBF-processed AlSi9Cu3 alloy under different heat treatments, focusing on the correlation between melt pool features, microstructure, and corrosion mechanisms. In the as-built condition, the alloy exhibited a well-defined melt pool structure with Si- and Cu-rich precipitates concentrated along the melt pool boundaries. These precipitates acted as efficient cathodic sites, driving micro-galvanic interactions and leading to an inter-melt pool corrosion morphology. Low-temperature heat treatments preserved the melt pool structure while promoting the precipitation of additional Cu- and Si-rich phases. This increased the galvanic interactions and exacerbated selective corrosion, producing a more severe inter-melt pool attack. Solution treatments dissolved and redistributed the precipitates, producing a more homogeneous microstructure. The resulting reduction of galvanic coupling significantly improved corrosion resistance and promoted a more uniform corrosion morphology. Conversely, artificial aging promoted the precipitation and coarsening of Cu-rich phases, which increased intergranular corrosion susceptibility. These findings emphasize the pivotal role of melt pool structure control and tailored heat treatments in designing LPBF aluminium alloys with improved corrosion resistance.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"258 ","pages":"Article 113410"},"PeriodicalIF":7.4000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of macro and microstructure on the mechanical and corrosion behaviour of an innovative LPBF-processed AlSi9Cu3 alloy\",\"authors\":\"S. Lorenzi , D. Asperti , M. Cabrini , L. Nani , M. Lombardi , I. Lagalante , A. Martucci , T. Pastore\",\"doi\":\"10.1016/j.corsci.2025.113410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rapid solidification associated with laser powder bed fusion (LPBF) promotes oversaturation of the α-Al matrix with alloying elements and redistribution of second phases, resulting in a fine-grained melt pool microstructure that strongly affects corrosion behaviour. This work investigates the corrosion response of LPBF-processed AlSi9Cu3 alloy under different heat treatments, focusing on the correlation between melt pool features, microstructure, and corrosion mechanisms. In the as-built condition, the alloy exhibited a well-defined melt pool structure with Si- and Cu-rich precipitates concentrated along the melt pool boundaries. These precipitates acted as efficient cathodic sites, driving micro-galvanic interactions and leading to an inter-melt pool corrosion morphology. Low-temperature heat treatments preserved the melt pool structure while promoting the precipitation of additional Cu- and Si-rich phases. This increased the galvanic interactions and exacerbated selective corrosion, producing a more severe inter-melt pool attack. Solution treatments dissolved and redistributed the precipitates, producing a more homogeneous microstructure. The resulting reduction of galvanic coupling significantly improved corrosion resistance and promoted a more uniform corrosion morphology. Conversely, artificial aging promoted the precipitation and coarsening of Cu-rich phases, which increased intergranular corrosion susceptibility. These findings emphasize the pivotal role of melt pool structure control and tailored heat treatments in designing LPBF aluminium alloys with improved corrosion resistance.</div></div>\",\"PeriodicalId\":290,\"journal\":{\"name\":\"Corrosion Science\",\"volume\":\"258 \",\"pages\":\"Article 113410\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010938X25007383\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010938X25007383","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
The effect of macro and microstructure on the mechanical and corrosion behaviour of an innovative LPBF-processed AlSi9Cu3 alloy
The rapid solidification associated with laser powder bed fusion (LPBF) promotes oversaturation of the α-Al matrix with alloying elements and redistribution of second phases, resulting in a fine-grained melt pool microstructure that strongly affects corrosion behaviour. This work investigates the corrosion response of LPBF-processed AlSi9Cu3 alloy under different heat treatments, focusing on the correlation between melt pool features, microstructure, and corrosion mechanisms. In the as-built condition, the alloy exhibited a well-defined melt pool structure with Si- and Cu-rich precipitates concentrated along the melt pool boundaries. These precipitates acted as efficient cathodic sites, driving micro-galvanic interactions and leading to an inter-melt pool corrosion morphology. Low-temperature heat treatments preserved the melt pool structure while promoting the precipitation of additional Cu- and Si-rich phases. This increased the galvanic interactions and exacerbated selective corrosion, producing a more severe inter-melt pool attack. Solution treatments dissolved and redistributed the precipitates, producing a more homogeneous microstructure. The resulting reduction of galvanic coupling significantly improved corrosion resistance and promoted a more uniform corrosion morphology. Conversely, artificial aging promoted the precipitation and coarsening of Cu-rich phases, which increased intergranular corrosion susceptibility. These findings emphasize the pivotal role of melt pool structure control and tailored heat treatments in designing LPBF aluminium alloys with improved corrosion resistance.
期刊介绍:
Corrosion occurrence and its practical control encompass a vast array of scientific knowledge. Corrosion Science endeavors to serve as the conduit for the exchange of ideas, developments, and research across all facets of this field, encompassing both metallic and non-metallic corrosion. The scope of this international journal is broad and inclusive. Published papers span from highly theoretical inquiries to essentially practical applications, covering diverse areas such as high-temperature oxidation, passivity, anodic oxidation, biochemical corrosion, stress corrosion cracking, and corrosion control mechanisms and methodologies.
This journal publishes original papers and critical reviews across the spectrum of pure and applied corrosion, material degradation, and surface science and engineering. It serves as a crucial link connecting metallurgists, materials scientists, and researchers investigating corrosion and degradation phenomena. Join us in advancing knowledge and understanding in the vital field of corrosion science.