非均相光热转换增强复合相变材料的制备与性能研究

IF 6 2区 工程技术 Q2 ENERGY & FUELS
Hechao Zhao, Xiangfei Kong, Jianjuan Yuan, Huageng Dai
{"title":"非均相光热转换增强复合相变材料的制备与性能研究","authors":"Hechao Zhao,&nbsp;Xiangfei Kong,&nbsp;Jianjuan Yuan,&nbsp;Huageng Dai","doi":"10.1016/j.solener.2025.114049","DOIUrl":null,"url":null,"abstract":"<div><div>To address the heat transfer bottleneck in photothermal devices due to low material thermal conductivity and insufficient photothermal synergy, this study prepared a graphene-reinforced flexible stratified composite phase change materials (FSPCM) based on paraffin wax (PW), styrene-ethylene-butene block copolymer (SEBS), and graphene (Gr) system by utilizing Gr’s high thermal conductivity and broad-spectrum light-absorption properties. The design forms a “heat-absorbing-heat-conducting” functional gradient structure by alternately stacking a black high light-absorbing/heat-conducting Gr/PW/SEBS layer with a white phase-change light-transmitting PW/SEBS layer. The experimental results show that the phase transition enthalpy is 187.96 J/g in DSC test, and the mass loss is only 0.028 % after 200 thermal cycles, with excellent cycling stability. The layered gradient design significantly improves the interfacial heat transfer efficiency, and the thermal conductivity of the composite material reaches 1.53 W/(m·K). Through the positive feedback mechanism formed by the plasma resonance effect of Gr and the phase change transmittance of PW, the efficiency of the light-heat conversion is improved by 22.9 %. Through the xenon lamp light source simulation test, FSPCM in 500 W/m<sup>2</sup> irradiation heating rate of 0.87 °C/min, phase transition time shortened by 10 %, compared with the traditional homogeneous material Gr dosage reduced by 60 %, cost reduction of 22 %.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"302 ","pages":"Article 114049"},"PeriodicalIF":6.0000,"publicationDate":"2025-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and performance of Heterogeneous photothermal conversion enhanced composite phase change materials\",\"authors\":\"Hechao Zhao,&nbsp;Xiangfei Kong,&nbsp;Jianjuan Yuan,&nbsp;Huageng Dai\",\"doi\":\"10.1016/j.solener.2025.114049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To address the heat transfer bottleneck in photothermal devices due to low material thermal conductivity and insufficient photothermal synergy, this study prepared a graphene-reinforced flexible stratified composite phase change materials (FSPCM) based on paraffin wax (PW), styrene-ethylene-butene block copolymer (SEBS), and graphene (Gr) system by utilizing Gr’s high thermal conductivity and broad-spectrum light-absorption properties. The design forms a “heat-absorbing-heat-conducting” functional gradient structure by alternately stacking a black high light-absorbing/heat-conducting Gr/PW/SEBS layer with a white phase-change light-transmitting PW/SEBS layer. The experimental results show that the phase transition enthalpy is 187.96 J/g in DSC test, and the mass loss is only 0.028 % after 200 thermal cycles, with excellent cycling stability. The layered gradient design significantly improves the interfacial heat transfer efficiency, and the thermal conductivity of the composite material reaches 1.53 W/(m·K). Through the positive feedback mechanism formed by the plasma resonance effect of Gr and the phase change transmittance of PW, the efficiency of the light-heat conversion is improved by 22.9 %. Through the xenon lamp light source simulation test, FSPCM in 500 W/m<sup>2</sup> irradiation heating rate of 0.87 °C/min, phase transition time shortened by 10 %, compared with the traditional homogeneous material Gr dosage reduced by 60 %, cost reduction of 22 %.</div></div>\",\"PeriodicalId\":428,\"journal\":{\"name\":\"Solar Energy\",\"volume\":\"302 \",\"pages\":\"Article 114049\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038092X25008126\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X25008126","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

为解决光热器件中材料导热系数低、光热协同作用不足等传热瓶颈问题,本研究利用石墨烯(Gr)体系的高导热性能和广谱光吸收特性,制备了基于石蜡(PW)、苯乙烯-乙烯-丁烯嵌段共聚物(SEBS)和石墨烯(Gr)体系的石墨烯增强柔性层状复合相变材料(FSPCM)。设计将黑色高吸光/导热Gr/PW/SEBS层与白色相变透光PW/SEBS层交替堆叠,形成“吸热-导热”功能梯度结构。实验结果表明,在DSC测试中,相变焓为187.96 J/g,经过200次热循环后,质量损失仅为0.028 %,具有良好的循环稳定性。分层梯度设计显著提高了界面换热效率,复合材料的导热系数达到1.53 W/(m·K)。通过Gr的等离子体共振效应与PW的相变透过率形成的正反馈机制,光热转换效率提高22.9 %。通过氙灯光源模拟试验,FSPCM在500 W/m2照射下升温速率为0.87 °C/min,相变时间缩短了10 %,与传统均质材料相比Gr用量减少了60 %,成本降低了22 %。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preparation and performance of Heterogeneous photothermal conversion enhanced composite phase change materials
To address the heat transfer bottleneck in photothermal devices due to low material thermal conductivity and insufficient photothermal synergy, this study prepared a graphene-reinforced flexible stratified composite phase change materials (FSPCM) based on paraffin wax (PW), styrene-ethylene-butene block copolymer (SEBS), and graphene (Gr) system by utilizing Gr’s high thermal conductivity and broad-spectrum light-absorption properties. The design forms a “heat-absorbing-heat-conducting” functional gradient structure by alternately stacking a black high light-absorbing/heat-conducting Gr/PW/SEBS layer with a white phase-change light-transmitting PW/SEBS layer. The experimental results show that the phase transition enthalpy is 187.96 J/g in DSC test, and the mass loss is only 0.028 % after 200 thermal cycles, with excellent cycling stability. The layered gradient design significantly improves the interfacial heat transfer efficiency, and the thermal conductivity of the composite material reaches 1.53 W/(m·K). Through the positive feedback mechanism formed by the plasma resonance effect of Gr and the phase change transmittance of PW, the efficiency of the light-heat conversion is improved by 22.9 %. Through the xenon lamp light source simulation test, FSPCM in 500 W/m2 irradiation heating rate of 0.87 °C/min, phase transition time shortened by 10 %, compared with the traditional homogeneous material Gr dosage reduced by 60 %, cost reduction of 22 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信