{"title":"非相对论极限区非线性Klein-Gordon方程的高阶渐近展开式","authors":"Jia Shen , Yanni Wang , Haohao Zheng","doi":"10.1016/j.jde.2025.113832","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents an investigation into the high-order asymptotic expansion for 2D and 3D cubic nonlinear Klein-Gordon equations in the non-relativistic limit regime. There are extensive numerical and analytical results concerning that the solution of NLKG can be approximated by first-order modulated Schrödinger profiles in terms of <span><math><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mfrac><mrow><mi>t</mi></mrow><mrow><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></mrow></msup><mi>v</mi><mo>+</mo><mi>c</mi><mo>.</mo><mi>c</mi><mo>.</mo></math></span>, where <em>v</em> is the solution of related NLS and “<span><math><mi>c</mi><mo>.</mo><mi>c</mi><mo>.</mo></math></span>” denotes the complex conjugate. Particularly, the best analytical result up to now is given in <span><span>[20]</span></span>, which proves that the <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> norm of the error can be controlled by <span><math><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mo>(</mo><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>t</mi><mo>)</mo></mrow><mrow><mfrac><mrow><mi>α</mi></mrow><mrow><mn>4</mn></mrow></mfrac></mrow></msup></math></span> for <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>x</mi></mrow><mrow><mi>α</mi></mrow></msubsup></math></span>-data, <span><math><mi>α</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mn>4</mn><mo>]</mo></math></span>. As for the high-order expansion, to our best knowledge, there are only numerical results, while the theoretical one is lacking.</div><div>In this paper, we extend this study further and give the first high-order analytical result. We introduce the high-order expansion inspired by the numerical experiments in <span><span>[24]</span></span>, <span><span>[15]</span></span>:<span><span><span><math><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mfrac><mrow><mi>t</mi></mrow><mrow><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></mrow></msup><mi>v</mi><mo>+</mo><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>8</mn></mrow></mfrac><msup><mrow><mi>e</mi></mrow><mrow><mn>3</mn><mi>i</mi><mfrac><mrow><mi>t</mi></mrow><mrow><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></mrow></msup><msup><mrow><mi>v</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mfrac><mrow><mi>t</mi></mrow><mrow><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></mrow></msup><mi>w</mi><mo>)</mo><mo>+</mo><mi>c</mi><mo>.</mo><mi>c</mi><mo>.</mo><mo>,</mo></math></span></span></span> where <em>w</em> is the solution to some specific Schrödinger-type equation. We show that the <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> estimate of the error is of higher order <span><math><msup><mrow><mi>ε</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>+</mo><msup><mrow><mo>(</mo><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>t</mi><mo>)</mo></mrow><mrow><mfrac><mrow><mi>α</mi></mrow><mrow><mn>4</mn></mrow></mfrac></mrow></msup></math></span> for <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>x</mi></mrow><mrow><mi>α</mi></mrow></msubsup></math></span>-data, <span><math><mi>α</mi><mo>∈</mo><mo>[</mo><mn>4</mn><mo>,</mo><mn>8</mn><mo>]</mo></math></span>. Besides, some counter-examples are given to suggest the sharpness of this upper bound.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"453 ","pages":"Article 113832"},"PeriodicalIF":2.3000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-order asymptotic expansion for the nonlinear Klein-Gordon equation in the non-relativistic limit regime\",\"authors\":\"Jia Shen , Yanni Wang , Haohao Zheng\",\"doi\":\"10.1016/j.jde.2025.113832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents an investigation into the high-order asymptotic expansion for 2D and 3D cubic nonlinear Klein-Gordon equations in the non-relativistic limit regime. There are extensive numerical and analytical results concerning that the solution of NLKG can be approximated by first-order modulated Schrödinger profiles in terms of <span><math><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mfrac><mrow><mi>t</mi></mrow><mrow><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></mrow></msup><mi>v</mi><mo>+</mo><mi>c</mi><mo>.</mo><mi>c</mi><mo>.</mo></math></span>, where <em>v</em> is the solution of related NLS and “<span><math><mi>c</mi><mo>.</mo><mi>c</mi><mo>.</mo></math></span>” denotes the complex conjugate. Particularly, the best analytical result up to now is given in <span><span>[20]</span></span>, which proves that the <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> norm of the error can be controlled by <span><math><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mo>(</mo><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>t</mi><mo>)</mo></mrow><mrow><mfrac><mrow><mi>α</mi></mrow><mrow><mn>4</mn></mrow></mfrac></mrow></msup></math></span> for <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>x</mi></mrow><mrow><mi>α</mi></mrow></msubsup></math></span>-data, <span><math><mi>α</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mn>4</mn><mo>]</mo></math></span>. As for the high-order expansion, to our best knowledge, there are only numerical results, while the theoretical one is lacking.</div><div>In this paper, we extend this study further and give the first high-order analytical result. We introduce the high-order expansion inspired by the numerical experiments in <span><span>[24]</span></span>, <span><span>[15]</span></span>:<span><span><span><math><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mfrac><mrow><mi>t</mi></mrow><mrow><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></mrow></msup><mi>v</mi><mo>+</mo><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>8</mn></mrow></mfrac><msup><mrow><mi>e</mi></mrow><mrow><mn>3</mn><mi>i</mi><mfrac><mrow><mi>t</mi></mrow><mrow><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></mrow></msup><msup><mrow><mi>v</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mfrac><mrow><mi>t</mi></mrow><mrow><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></mrow></msup><mi>w</mi><mo>)</mo><mo>+</mo><mi>c</mi><mo>.</mo><mi>c</mi><mo>.</mo><mo>,</mo></math></span></span></span> where <em>w</em> is the solution to some specific Schrödinger-type equation. We show that the <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> estimate of the error is of higher order <span><math><msup><mrow><mi>ε</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>+</mo><msup><mrow><mo>(</mo><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>t</mi><mo>)</mo></mrow><mrow><mfrac><mrow><mi>α</mi></mrow><mrow><mn>4</mn></mrow></mfrac></mrow></msup></math></span> for <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>x</mi></mrow><mrow><mi>α</mi></mrow></msubsup></math></span>-data, <span><math><mi>α</mi><mo>∈</mo><mo>[</mo><mn>4</mn><mo>,</mo><mn>8</mn><mo>]</mo></math></span>. Besides, some counter-examples are given to suggest the sharpness of this upper bound.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"453 \",\"pages\":\"Article 113832\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625008599\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625008599","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
High-order asymptotic expansion for the nonlinear Klein-Gordon equation in the non-relativistic limit regime
This paper presents an investigation into the high-order asymptotic expansion for 2D and 3D cubic nonlinear Klein-Gordon equations in the non-relativistic limit regime. There are extensive numerical and analytical results concerning that the solution of NLKG can be approximated by first-order modulated Schrödinger profiles in terms of , where v is the solution of related NLS and “” denotes the complex conjugate. Particularly, the best analytical result up to now is given in [20], which proves that the norm of the error can be controlled by for -data, . As for the high-order expansion, to our best knowledge, there are only numerical results, while the theoretical one is lacking.
In this paper, we extend this study further and give the first high-order analytical result. We introduce the high-order expansion inspired by the numerical experiments in [24], [15]: where w is the solution to some specific Schrödinger-type equation. We show that the estimate of the error is of higher order for -data, . Besides, some counter-examples are given to suggest the sharpness of this upper bound.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics