三维可压缩弹性系统的全局适定性和消失黏度极限

IF 2.3 2区 数学 Q1 MATHEMATICS
Guochun Wu , Wenbin Zhao
{"title":"三维可压缩弹性系统的全局适定性和消失黏度极限","authors":"Guochun Wu ,&nbsp;Wenbin Zhao","doi":"10.1016/j.jde.2025.113849","DOIUrl":null,"url":null,"abstract":"<div><div>The compressible elastodynamics is a typical example of systems with different wave speeds, which are difficult to be solved due to lack of symmetries. In general, the nonlinear interactions among the pressure waves are so strong that the global existence of classical solutions cannot be expected. In this article we investigate a specific example, namely the compressible Mooney–Rivlin materials, of which both the interactions among the pressure waves and among the shear waves satisfy the null conditions respectively. With delicate analysis of the linear system, we manage to identify all the good unknowns in a simpler form which are essential to exploit the null conditions for extra time decay. The approach to the a priori energy estimates applies to both inviscid and viscous systems, and enables us to justify the vanishing viscosity limit result.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"453 ","pages":"Article 113849"},"PeriodicalIF":2.3000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global well-posedness and vanishing viscosity limit of the compressible elastic system in three dimensions\",\"authors\":\"Guochun Wu ,&nbsp;Wenbin Zhao\",\"doi\":\"10.1016/j.jde.2025.113849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The compressible elastodynamics is a typical example of systems with different wave speeds, which are difficult to be solved due to lack of symmetries. In general, the nonlinear interactions among the pressure waves are so strong that the global existence of classical solutions cannot be expected. In this article we investigate a specific example, namely the compressible Mooney–Rivlin materials, of which both the interactions among the pressure waves and among the shear waves satisfy the null conditions respectively. With delicate analysis of the linear system, we manage to identify all the good unknowns in a simpler form which are essential to exploit the null conditions for extra time decay. The approach to the a priori energy estimates applies to both inviscid and viscous systems, and enables us to justify the vanishing viscosity limit result.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"453 \",\"pages\":\"Article 113849\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625008769\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625008769","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

可压缩弹性动力学是不同波速系统的典型例子,由于缺乏对称性而难以求解。一般情况下,压力波之间的非线性相互作用是如此强烈,以至于不能期望经典解的整体存在性。本文研究了一个具体的例子,即可压缩Mooney-Rivlin材料,其压力波之间的相互作用和剪切波之间的相互作用分别满足零条件。通过对线性系统的细致分析,我们设法以一种更简单的形式识别所有好的未知数,这对于利用额外时间衰减的零条件至关重要。先验能量估计的方法适用于无粘性和粘性系统,并使我们能够证明消失的粘度极限结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global well-posedness and vanishing viscosity limit of the compressible elastic system in three dimensions
The compressible elastodynamics is a typical example of systems with different wave speeds, which are difficult to be solved due to lack of symmetries. In general, the nonlinear interactions among the pressure waves are so strong that the global existence of classical solutions cannot be expected. In this article we investigate a specific example, namely the compressible Mooney–Rivlin materials, of which both the interactions among the pressure waves and among the shear waves satisfy the null conditions respectively. With delicate analysis of the linear system, we manage to identify all the good unknowns in a simpler form which are essential to exploit the null conditions for extra time decay. The approach to the a priori energy estimates applies to both inviscid and viscous systems, and enables us to justify the vanishing viscosity limit result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信