基于双动态量化优化的智能农业联邦学习

IF 7.6 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Shaohui Zhang , Qiuying Han , Hongfeng Wang , Jing Liu , Boyuan Li
{"title":"基于双动态量化优化的智能农业联邦学习","authors":"Shaohui Zhang ,&nbsp;Qiuying Han ,&nbsp;Hongfeng Wang ,&nbsp;Jing Liu ,&nbsp;Boyuan Li","doi":"10.1016/j.iot.2025.101798","DOIUrl":null,"url":null,"abstract":"<div><div>The convergence of Federated Learning (FL), Machine Learning (ML), and the Internet of Things (IoT) creates promising opportunities for smart agriculture, where connectivity constraints and limited device resources pose major bottlenecks. To address these challenges, we propose a Dual Dynamic Quantization Optimization (FedDDO) framework that jointly integrates quantizer design, adaptive bit allocation, and quantization-error-aware aggregation. On the client side, FedDDO dynamically adjusts quantization bit-widths according to real-time resource conditions, while on the server side, aggregation weights are optimized based on quantization error feedback. A novel Minimum Relative Quantization Error (MRQE) quantizer is designed to align with unbiased error assumptions, and theoretical analysis under non-convex settings provides convergence guarantees. Extensive experiments on both standard benchmarks (CIFAR-10/100) and agriculture-specific datasets (rice seedling classification and disease recognition) demonstrate that FedDDO effectively reduces communication costs and accelerates convergence, achieving competitive accuracy while preserving domain applicability.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"34 ","pages":"Article 101798"},"PeriodicalIF":7.6000,"publicationDate":"2025-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Federated learning with dual dynamic quantization optimization in smart agriculture\",\"authors\":\"Shaohui Zhang ,&nbsp;Qiuying Han ,&nbsp;Hongfeng Wang ,&nbsp;Jing Liu ,&nbsp;Boyuan Li\",\"doi\":\"10.1016/j.iot.2025.101798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The convergence of Federated Learning (FL), Machine Learning (ML), and the Internet of Things (IoT) creates promising opportunities for smart agriculture, where connectivity constraints and limited device resources pose major bottlenecks. To address these challenges, we propose a Dual Dynamic Quantization Optimization (FedDDO) framework that jointly integrates quantizer design, adaptive bit allocation, and quantization-error-aware aggregation. On the client side, FedDDO dynamically adjusts quantization bit-widths according to real-time resource conditions, while on the server side, aggregation weights are optimized based on quantization error feedback. A novel Minimum Relative Quantization Error (MRQE) quantizer is designed to align with unbiased error assumptions, and theoretical analysis under non-convex settings provides convergence guarantees. Extensive experiments on both standard benchmarks (CIFAR-10/100) and agriculture-specific datasets (rice seedling classification and disease recognition) demonstrate that FedDDO effectively reduces communication costs and accelerates convergence, achieving competitive accuracy while preserving domain applicability.</div></div>\",\"PeriodicalId\":29968,\"journal\":{\"name\":\"Internet of Things\",\"volume\":\"34 \",\"pages\":\"Article 101798\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet of Things\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542660525003129\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660525003129","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

联邦学习(FL)、机器学习(ML)和物联网(IoT)的融合为智能农业创造了充满希望的机会,在智能农业中,连接限制和有限的设备资源构成了主要瓶颈。为了解决这些挑战,我们提出了一个双动态量化优化(FedDDO)框架,该框架联合集成了量化器设计、自适应比特分配和量化错误感知聚合。在客户端,FedDDO根据实时资源情况动态调整量化位宽,在服务器端,基于量化误差反馈优化聚合权值。设计了一种新的最小相对量化误差(MRQE)量化器,以对准无偏误差假设,并在非凸设置下的理论分析提供了收敛保证。在标准基准(CIFAR-10/100)和农业特定数据集(水稻幼苗分类和疾病识别)上进行的大量实验表明,FedDDO有效地降低了通信成本并加速了收敛,在保持领域适用性的同时获得了具有竞争力的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Federated learning with dual dynamic quantization optimization in smart agriculture
The convergence of Federated Learning (FL), Machine Learning (ML), and the Internet of Things (IoT) creates promising opportunities for smart agriculture, where connectivity constraints and limited device resources pose major bottlenecks. To address these challenges, we propose a Dual Dynamic Quantization Optimization (FedDDO) framework that jointly integrates quantizer design, adaptive bit allocation, and quantization-error-aware aggregation. On the client side, FedDDO dynamically adjusts quantization bit-widths according to real-time resource conditions, while on the server side, aggregation weights are optimized based on quantization error feedback. A novel Minimum Relative Quantization Error (MRQE) quantizer is designed to align with unbiased error assumptions, and theoretical analysis under non-convex settings provides convergence guarantees. Extensive experiments on both standard benchmarks (CIFAR-10/100) and agriculture-specific datasets (rice seedling classification and disease recognition) demonstrate that FedDDO effectively reduces communication costs and accelerates convergence, achieving competitive accuracy while preserving domain applicability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Internet of Things
Internet of Things Multiple-
CiteScore
3.60
自引率
5.10%
发文量
115
审稿时长
37 days
期刊介绍: Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT. The journal will place a high priority on timely publication, and provide a home for high quality. Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信