多参数热失控监测平台揭示LiNi0.8Co0.1Mn0.1O2电池soc相关热失控机制

IF 7.9 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Longfei Han , Mengdan Zhang , Xiangming Hu , Jinfeng Li , Xinyue Yang , Lihua Jiang , Yurui Deng , Yuan Cheng , Zhenglong He , Biao Kong
{"title":"多参数热失控监测平台揭示LiNi0.8Co0.1Mn0.1O2电池soc相关热失控机制","authors":"Longfei Han ,&nbsp;Mengdan Zhang ,&nbsp;Xiangming Hu ,&nbsp;Jinfeng Li ,&nbsp;Xinyue Yang ,&nbsp;Lihua Jiang ,&nbsp;Yurui Deng ,&nbsp;Yuan Cheng ,&nbsp;Zhenglong He ,&nbsp;Biao Kong","doi":"10.1016/j.jpowsour.2025.238594","DOIUrl":null,"url":null,"abstract":"<div><div>Thermal runaway (TR) propagation in lithium-ion batteries, particularly in high-nickel LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> (NCM811) batteries, poses critical safety concerns for energy storage system. The state of charge (SOC) is a critical factor influencing battery safety. This study systematically investigates TR behaviors in 18650-type NCM811 batteries under 0%, 50%, and 100% SOC conditions using an integrated multi-parameter monitoring platform. The platform combines programmable thermal stimulation, synchronized thermocouple arrays, infrared imaging (capturing spatial-temporal temperature gradients), and cone calorimetry (quantifying heat and smoke release rates). Results reveal a strong SOC-dependent TR response: Fully charged batteries (100% SOC) show a 73.9% increase in total heat release (16.1 MJ/m<sup>2</sup> vs. 4.2 MJ/m<sup>2</sup> at 50% SOC) and accelerated CO/CO<sub>2</sub> emissions due to intensified electrolyte decomposition. Paradoxically, fully discharged batteries (0% SOC) produce higher cumulative smoke, which is attributed to incomplete oxidation of carbonaceous anode materials under moderated TR conditions. These quantitative correlations help resolve conflicting combustion behaviors across SOC levels and provide mechanistic insights for SOC-specific thermal management strategies in battery safety design. The novel TR testing platform enables comprehensive analysis of battery failure progression and supports in-depth investigations into lithium-ion battery safety enhancement.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"661 ","pages":"Article 238594"},"PeriodicalIF":7.9000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-parameter thermal runaway monitoring platform unraveling SOC-dependent thermal runaway mechanisms in LiNi0.8Co0.1Mn0.1O2 batteries\",\"authors\":\"Longfei Han ,&nbsp;Mengdan Zhang ,&nbsp;Xiangming Hu ,&nbsp;Jinfeng Li ,&nbsp;Xinyue Yang ,&nbsp;Lihua Jiang ,&nbsp;Yurui Deng ,&nbsp;Yuan Cheng ,&nbsp;Zhenglong He ,&nbsp;Biao Kong\",\"doi\":\"10.1016/j.jpowsour.2025.238594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Thermal runaway (TR) propagation in lithium-ion batteries, particularly in high-nickel LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> (NCM811) batteries, poses critical safety concerns for energy storage system. The state of charge (SOC) is a critical factor influencing battery safety. This study systematically investigates TR behaviors in 18650-type NCM811 batteries under 0%, 50%, and 100% SOC conditions using an integrated multi-parameter monitoring platform. The platform combines programmable thermal stimulation, synchronized thermocouple arrays, infrared imaging (capturing spatial-temporal temperature gradients), and cone calorimetry (quantifying heat and smoke release rates). Results reveal a strong SOC-dependent TR response: Fully charged batteries (100% SOC) show a 73.9% increase in total heat release (16.1 MJ/m<sup>2</sup> vs. 4.2 MJ/m<sup>2</sup> at 50% SOC) and accelerated CO/CO<sub>2</sub> emissions due to intensified electrolyte decomposition. Paradoxically, fully discharged batteries (0% SOC) produce higher cumulative smoke, which is attributed to incomplete oxidation of carbonaceous anode materials under moderated TR conditions. These quantitative correlations help resolve conflicting combustion behaviors across SOC levels and provide mechanistic insights for SOC-specific thermal management strategies in battery safety design. The novel TR testing platform enables comprehensive analysis of battery failure progression and supports in-depth investigations into lithium-ion battery safety enhancement.</div></div>\",\"PeriodicalId\":377,\"journal\":{\"name\":\"Journal of Power Sources\",\"volume\":\"661 \",\"pages\":\"Article 238594\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378775325024309\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775325024309","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

锂离子电池,特别是高镍LiNi0.8Co0.1Mn0.1O2 (NCM811)电池的热失控(TR)传播对储能系统的安全构成了严重的威胁。电池荷电状态(SOC)是影响电池安全性的关键因素。本研究采用集成多参数监测平台,系统研究了18650型NCM811电池在0%、50%和100%荷电状态下的TR行为。该平台结合了可编程热刺激、同步热电偶阵列、红外成像(捕获时空温度梯度)和锥量热法(量化热量和烟雾释放率)。结果显示了强烈的SOC依赖的TR响应:完全充电的电池(100% SOC)显示总放热增加73.9% (16.1 MJ/m2,而50% SOC时为4.2 MJ/m2),并且由于电解质分解加剧,加速了CO/CO2排放。矛盾的是,完全放电的电池(0% SOC)会产生更高的累积烟雾,这是由于碳质阳极材料在慢化TR条件下氧化不完全造成的。这些定量相关性有助于解决不同SOC级别的燃烧行为冲突,并为电池安全设计中特定SOC的热管理策略提供机理见解。新型TR测试平台能够全面分析电池故障进展,并支持对锂离子电池安全性的深入研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-parameter thermal runaway monitoring platform unraveling SOC-dependent thermal runaway mechanisms in LiNi0.8Co0.1Mn0.1O2 batteries
Thermal runaway (TR) propagation in lithium-ion batteries, particularly in high-nickel LiNi0.8Co0.1Mn0.1O2 (NCM811) batteries, poses critical safety concerns for energy storage system. The state of charge (SOC) is a critical factor influencing battery safety. This study systematically investigates TR behaviors in 18650-type NCM811 batteries under 0%, 50%, and 100% SOC conditions using an integrated multi-parameter monitoring platform. The platform combines programmable thermal stimulation, synchronized thermocouple arrays, infrared imaging (capturing spatial-temporal temperature gradients), and cone calorimetry (quantifying heat and smoke release rates). Results reveal a strong SOC-dependent TR response: Fully charged batteries (100% SOC) show a 73.9% increase in total heat release (16.1 MJ/m2 vs. 4.2 MJ/m2 at 50% SOC) and accelerated CO/CO2 emissions due to intensified electrolyte decomposition. Paradoxically, fully discharged batteries (0% SOC) produce higher cumulative smoke, which is attributed to incomplete oxidation of carbonaceous anode materials under moderated TR conditions. These quantitative correlations help resolve conflicting combustion behaviors across SOC levels and provide mechanistic insights for SOC-specific thermal management strategies in battery safety design. The novel TR testing platform enables comprehensive analysis of battery failure progression and supports in-depth investigations into lithium-ion battery safety enhancement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信