亚硝酸盐杂质对太阳盐的影响:热物理性质及结构分析

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Yannan Kang , Yuan Zhong , Huaiyou Wang , Yue zhang , Xinghong Duo , Jinli Li
{"title":"亚硝酸盐杂质对太阳盐的影响:热物理性质及结构分析","authors":"Yannan Kang ,&nbsp;Yuan Zhong ,&nbsp;Huaiyou Wang ,&nbsp;Yue zhang ,&nbsp;Xinghong Duo ,&nbsp;Jinli Li","doi":"10.1016/j.solmat.2025.114017","DOIUrl":null,"url":null,"abstract":"<div><div>Solar Salt is the most widely used heat transfer and storage medium in concentrated solar power plants. However, the performance of Solar Salt and its economic viability in industrial applications is influenced by NO<sub>2</sub><sup>−</sup>, an impurity whose effect on the thermal properties of Solar Salt remains underexplored. This study involved a systematic investigation of the effects of this impurity (0.5–6.0 wt%) on the thermophysical properties (including the melting point, decomposition temperature, specific heat capacity, viscosity, thermal conductivity, and density) and the thermal stability of Solar Salt, and the influence of NO<sub>2</sub><sup>−</sup> on the microstructure of the molten salt is elucidated. NO<sub>2</sub><sup>−</sup> significantly affects the melting point, specific heat capacity, and thermal conductivity, but has negligible effects on the decomposition temperature, viscosity, density, and thermal stability. Notably, the thermal conductivity, which exhibits the highest sensitivity to NO<sub>2</sub><sup>−</sup>, decreases by 23.1 %, even at a low NO<sub>2</sub><sup>−</sup> concentration of 0.5 wt%. For impurity concentrations greater than 2.0 wt%, the melting point and specific heat capacity decline significantly, for instance by 21 °C and 26.1 %, respectively, at 6.0 wt% NO<sub>2</sub><sup>−</sup>. Advanced characterization (X-ray diffraction, Raman and Fourier transform infrared spectroscopy, and scanning electron microscopy) reveals that NO<sub>2</sub><sup>−</sup> induces significant microstructural reorganization within the molten salt system. Based on these findings, we recommend maintaining a NO<sub>2</sub><sup>−</sup> concentration of &lt;2.0 wt% to ensure optimal stability in terms of the thermophysical properties.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"295 ","pages":"Article 114017"},"PeriodicalIF":6.3000,"publicationDate":"2025-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of the nitrite impurity on Solar Salt: Thermophysical properties and structural analysis\",\"authors\":\"Yannan Kang ,&nbsp;Yuan Zhong ,&nbsp;Huaiyou Wang ,&nbsp;Yue zhang ,&nbsp;Xinghong Duo ,&nbsp;Jinli Li\",\"doi\":\"10.1016/j.solmat.2025.114017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Solar Salt is the most widely used heat transfer and storage medium in concentrated solar power plants. However, the performance of Solar Salt and its economic viability in industrial applications is influenced by NO<sub>2</sub><sup>−</sup>, an impurity whose effect on the thermal properties of Solar Salt remains underexplored. This study involved a systematic investigation of the effects of this impurity (0.5–6.0 wt%) on the thermophysical properties (including the melting point, decomposition temperature, specific heat capacity, viscosity, thermal conductivity, and density) and the thermal stability of Solar Salt, and the influence of NO<sub>2</sub><sup>−</sup> on the microstructure of the molten salt is elucidated. NO<sub>2</sub><sup>−</sup> significantly affects the melting point, specific heat capacity, and thermal conductivity, but has negligible effects on the decomposition temperature, viscosity, density, and thermal stability. Notably, the thermal conductivity, which exhibits the highest sensitivity to NO<sub>2</sub><sup>−</sup>, decreases by 23.1 %, even at a low NO<sub>2</sub><sup>−</sup> concentration of 0.5 wt%. For impurity concentrations greater than 2.0 wt%, the melting point and specific heat capacity decline significantly, for instance by 21 °C and 26.1 %, respectively, at 6.0 wt% NO<sub>2</sub><sup>−</sup>. Advanced characterization (X-ray diffraction, Raman and Fourier transform infrared spectroscopy, and scanning electron microscopy) reveals that NO<sub>2</sub><sup>−</sup> induces significant microstructural reorganization within the molten salt system. Based on these findings, we recommend maintaining a NO<sub>2</sub><sup>−</sup> concentration of &lt;2.0 wt% to ensure optimal stability in terms of the thermophysical properties.</div></div>\",\"PeriodicalId\":429,\"journal\":{\"name\":\"Solar Energy Materials and Solar Cells\",\"volume\":\"295 \",\"pages\":\"Article 114017\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials and Solar Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092702482500618X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092702482500618X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

太阳能盐是聚光太阳能电站中应用最广泛的传热储热介质。然而,太阳盐的性能及其在工业应用中的经济可行性受到NO2−的影响,NO2−是一种对太阳盐热性能的影响尚未得到充分研究的杂质。本研究系统地研究了NO2−对太阳盐热物理性质(包括熔点、分解温度、比热容、粘度、导热系数和密度)和热稳定性的影响,并阐明了NO2−对熔盐微观结构的影响。NO2−显著影响熔点、比热容和导热系数,但对分解温度、粘度、密度和热稳定性的影响可以忽略不计。值得注意的是,即使在NO2−浓度为0.5 wt%的情况下,对NO2−最敏感的导热系数也降低了23.1%。当杂质浓度大于2.0 wt%时,熔点和比热容显著下降,例如,在6.0 wt% NO2−时,熔点和比热容分别下降21°C和26.1%。高级表征(x射线衍射、拉曼和傅里叶变换红外光谱以及扫描电镜)表明,NO2−在熔盐体系中诱导了显著的微观结构重组。基于这些发现,我们建议将NO2−浓度维持在2.0 wt%,以确保热物理性质的最佳稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of the nitrite impurity on Solar Salt: Thermophysical properties and structural analysis
Solar Salt is the most widely used heat transfer and storage medium in concentrated solar power plants. However, the performance of Solar Salt and its economic viability in industrial applications is influenced by NO2, an impurity whose effect on the thermal properties of Solar Salt remains underexplored. This study involved a systematic investigation of the effects of this impurity (0.5–6.0 wt%) on the thermophysical properties (including the melting point, decomposition temperature, specific heat capacity, viscosity, thermal conductivity, and density) and the thermal stability of Solar Salt, and the influence of NO2 on the microstructure of the molten salt is elucidated. NO2 significantly affects the melting point, specific heat capacity, and thermal conductivity, but has negligible effects on the decomposition temperature, viscosity, density, and thermal stability. Notably, the thermal conductivity, which exhibits the highest sensitivity to NO2, decreases by 23.1 %, even at a low NO2 concentration of 0.5 wt%. For impurity concentrations greater than 2.0 wt%, the melting point and specific heat capacity decline significantly, for instance by 21 °C and 26.1 %, respectively, at 6.0 wt% NO2. Advanced characterization (X-ray diffraction, Raman and Fourier transform infrared spectroscopy, and scanning electron microscopy) reveals that NO2 induces significant microstructural reorganization within the molten salt system. Based on these findings, we recommend maintaining a NO2 concentration of <2.0 wt% to ensure optimal stability in terms of the thermophysical properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信