关于一些同调d流形的构造

IF 0.7 3区 数学 Q2 MATHEMATICS
Biplab Basak, Sourav Sarkar
{"title":"关于一些同调d流形的构造","authors":"Biplab Basak,&nbsp;Sourav Sarkar","doi":"10.1016/j.disc.2025.114843","DOIUrl":null,"url":null,"abstract":"<div><div>The <em>g</em>-vector of a simplicial complex contains a lot of information about the combinatorial and topological structure of that complex. Several classification results regarding the structure of normal pseudomanifolds and homology manifolds have been established concerning the value of <span><math><msub><mrow><mi>g</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. It is known that when <span><math><msub><mrow><mi>g</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>0</mn></math></span>, all normal pseudomanifolds of dimensions at least three are stacked spheres. In the cases of <span><math><msub><mrow><mi>g</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span> and 2, all homology manifolds are polytopal spheres and can be obtained through retriangulation or join operations from the previous ones. In this article, we provide a combinatorial characterization of the homology <em>d</em>-manifolds, where <span><math><mi>d</mi><mo>≥</mo><mn>3</mn></math></span> and <span><math><msub><mrow><mi>g</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>3</mn></math></span>. These are spheres and can be obtained through operations such as joins, some retriangulations, and connected sums from spheres with <span><math><msub><mrow><mi>g</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≤</mo><mn>2</mn></math></span>. Furthermore, we have presented a structural result on prime normal <em>d</em>-pseudomanifolds with <span><math><msub><mrow><mi>g</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>3</mn></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 2","pages":"Article 114843"},"PeriodicalIF":0.7000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a construction of some homology d-manifolds\",\"authors\":\"Biplab Basak,&nbsp;Sourav Sarkar\",\"doi\":\"10.1016/j.disc.2025.114843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The <em>g</em>-vector of a simplicial complex contains a lot of information about the combinatorial and topological structure of that complex. Several classification results regarding the structure of normal pseudomanifolds and homology manifolds have been established concerning the value of <span><math><msub><mrow><mi>g</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. It is known that when <span><math><msub><mrow><mi>g</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>0</mn></math></span>, all normal pseudomanifolds of dimensions at least three are stacked spheres. In the cases of <span><math><msub><mrow><mi>g</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span> and 2, all homology manifolds are polytopal spheres and can be obtained through retriangulation or join operations from the previous ones. In this article, we provide a combinatorial characterization of the homology <em>d</em>-manifolds, where <span><math><mi>d</mi><mo>≥</mo><mn>3</mn></math></span> and <span><math><msub><mrow><mi>g</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>3</mn></math></span>. These are spheres and can be obtained through operations such as joins, some retriangulations, and connected sums from spheres with <span><math><msub><mrow><mi>g</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≤</mo><mn>2</mn></math></span>. Furthermore, we have presented a structural result on prime normal <em>d</em>-pseudomanifolds with <span><math><msub><mrow><mi>g</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>3</mn></math></span>.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"349 2\",\"pages\":\"Article 114843\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25004510\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25004510","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

简单复形的g向量包含了该复形的组合结构和拓扑结构的大量信息。关于正规伪流形和同调流形在g2值下的结构,建立了几个分类结果。已知当g2=0时,所有至少3维的正规伪流形都是叠球。在g2=1和2的情况下,所有的同调流形都是多面球,可以通过对前两个同调流形的再测量或连接操作得到。在本文中,我们给出了d≥3且g2=3的同调d流形的组合表征。这些都是球体,可以通过连接、一些再变换、g2≤2的球体的连通和等运算得到。进一步,我们给出了g2=3的素数正规d-伪泛褶的一个结构结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a construction of some homology d-manifolds
The g-vector of a simplicial complex contains a lot of information about the combinatorial and topological structure of that complex. Several classification results regarding the structure of normal pseudomanifolds and homology manifolds have been established concerning the value of g2. It is known that when g2=0, all normal pseudomanifolds of dimensions at least three are stacked spheres. In the cases of g2=1 and 2, all homology manifolds are polytopal spheres and can be obtained through retriangulation or join operations from the previous ones. In this article, we provide a combinatorial characterization of the homology d-manifolds, where d3 and g2=3. These are spheres and can be obtained through operations such as joins, some retriangulations, and connected sums from spheres with g22. Furthermore, we have presented a structural result on prime normal d-pseudomanifolds with g2=3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信