揭示Mo2C和Mo2CO2 MXenes用于钠离子电池的潜力:从头开始研究

IF 7.9 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Satchakorn Khammuang , Thanayut Kaewmaraya , Tanveer Hussain , Komsilp Kotmool
{"title":"揭示Mo2C和Mo2CO2 MXenes用于钠离子电池的潜力:从头开始研究","authors":"Satchakorn Khammuang ,&nbsp;Thanayut Kaewmaraya ,&nbsp;Tanveer Hussain ,&nbsp;Komsilp Kotmool","doi":"10.1016/j.jpowsour.2025.238592","DOIUrl":null,"url":null,"abstract":"<div><div>This study employs density functional theory (DFT) calculations to investigate the potential of Mo<sub>2</sub>C and Mo<sub>2</sub>CO<sub>2</sub> MXenes as promising anode material candidates for Na-ion batteries under varying biaxial strains. The findings indicate that O-termination significantly enhances the Na adsorption energy compared to bare Mo<sub>2</sub>C, due to a stronger O-Na interaction. Under compressive strain, the diffusion energy barrier decreases while it increases under tensile strain for both forms of Mo<sub>2</sub>C-based MXenes. <em>Ab initio</em> molecular dynamics (AIMD) simulations at 300 K, which verify the thermal stabilities of both calculated MXenes, suggest their maximum theoretical capacities at operational temperatures, calculated to be 131.43 mAh/g for Mo<sub>2</sub>C and 227.21 mAh/g for Mo<sub>2</sub>CO<sub>2</sub>. The open-circuit voltages (OCV) calculated from DFT total energies for the Na loadings retained after AIMD. The OVC is in the optimal range of 0–1.0 V, which helps prevent dendrite formation. The OCV values of 0.47 V for Mo<sub>2</sub>C and 0.65 V for Mo<sub>2</sub>CO<sub>2</sub> highlight their suitability as anodes. These results show that Mo<sub>2</sub>C and Mo<sub>2</sub>CO<sub>2</sub> have low energy barriers, high structural stability, and low OCV values, making them promising candidates for Na-ion battery anodes with properties that can be adjusted through biaxial strain modifications.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"661 ","pages":"Article 238592"},"PeriodicalIF":7.9000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the potential of Mo2C and Mo2CO2 MXenes for Na-ion batteries: An ab initio study\",\"authors\":\"Satchakorn Khammuang ,&nbsp;Thanayut Kaewmaraya ,&nbsp;Tanveer Hussain ,&nbsp;Komsilp Kotmool\",\"doi\":\"10.1016/j.jpowsour.2025.238592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study employs density functional theory (DFT) calculations to investigate the potential of Mo<sub>2</sub>C and Mo<sub>2</sub>CO<sub>2</sub> MXenes as promising anode material candidates for Na-ion batteries under varying biaxial strains. The findings indicate that O-termination significantly enhances the Na adsorption energy compared to bare Mo<sub>2</sub>C, due to a stronger O-Na interaction. Under compressive strain, the diffusion energy barrier decreases while it increases under tensile strain for both forms of Mo<sub>2</sub>C-based MXenes. <em>Ab initio</em> molecular dynamics (AIMD) simulations at 300 K, which verify the thermal stabilities of both calculated MXenes, suggest their maximum theoretical capacities at operational temperatures, calculated to be 131.43 mAh/g for Mo<sub>2</sub>C and 227.21 mAh/g for Mo<sub>2</sub>CO<sub>2</sub>. The open-circuit voltages (OCV) calculated from DFT total energies for the Na loadings retained after AIMD. The OVC is in the optimal range of 0–1.0 V, which helps prevent dendrite formation. The OCV values of 0.47 V for Mo<sub>2</sub>C and 0.65 V for Mo<sub>2</sub>CO<sub>2</sub> highlight their suitability as anodes. These results show that Mo<sub>2</sub>C and Mo<sub>2</sub>CO<sub>2</sub> have low energy barriers, high structural stability, and low OCV values, making them promising candidates for Na-ion battery anodes with properties that can be adjusted through biaxial strain modifications.</div></div>\",\"PeriodicalId\":377,\"journal\":{\"name\":\"Journal of Power Sources\",\"volume\":\"661 \",\"pages\":\"Article 238592\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378775325024280\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775325024280","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用密度泛函理论(DFT)计算研究了Mo2C和Mo2CO2 MXenes在不同双轴应变下作为na离子电池极材料的潜力。结果表明,由于O-Na相互作用更强,与裸Mo2C相比,o -端接明显提高了Na吸附能。压缩应变下,两种mo2c基MXenes的扩散能垒均减小,拉伸应变下扩散能垒均增大。在300 K下进行从头算分子动力学(AIMD)模拟,验证了这两种MXenes的热稳定性,结果表明它们在工作温度下的最大理论容量为Mo2C为131.43 mAh/g, Mo2CO2为227.21 mAh/g。由DFT总能量计算出AIMD后Na负载的开路电压(OCV)。OVC在0-1.0 V的最佳范围内,这有助于防止枝晶的形成。Mo2C的OCV值为0.47 V, Mo2CO2的OCV值为0.65 V,突出了它们作为阳极的适用性。这些结果表明,Mo2C和Mo2CO2具有低能垒,高结构稳定性和低OCV值,使其成为具有可通过双轴应变修饰调整性能的na离子电池阳极的有希望的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unveiling the potential of Mo2C and Mo2CO2 MXenes for Na-ion batteries: An ab initio study
This study employs density functional theory (DFT) calculations to investigate the potential of Mo2C and Mo2CO2 MXenes as promising anode material candidates for Na-ion batteries under varying biaxial strains. The findings indicate that O-termination significantly enhances the Na adsorption energy compared to bare Mo2C, due to a stronger O-Na interaction. Under compressive strain, the diffusion energy barrier decreases while it increases under tensile strain for both forms of Mo2C-based MXenes. Ab initio molecular dynamics (AIMD) simulations at 300 K, which verify the thermal stabilities of both calculated MXenes, suggest their maximum theoretical capacities at operational temperatures, calculated to be 131.43 mAh/g for Mo2C and 227.21 mAh/g for Mo2CO2. The open-circuit voltages (OCV) calculated from DFT total energies for the Na loadings retained after AIMD. The OVC is in the optimal range of 0–1.0 V, which helps prevent dendrite formation. The OCV values of 0.47 V for Mo2C and 0.65 V for Mo2CO2 highlight their suitability as anodes. These results show that Mo2C and Mo2CO2 have low energy barriers, high structural stability, and low OCV values, making them promising candidates for Na-ion battery anodes with properties that can be adjusted through biaxial strain modifications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信