在安培级电流密度下气体传质对制氢的影响

IF 7.9 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Zhisheng Mei , Tao Jiang , Yiran Teng , Hong Ping , Wenjing Li , Ejigu Alemu Guadie , Fei Teng
{"title":"在安培级电流密度下气体传质对制氢的影响","authors":"Zhisheng Mei ,&nbsp;Tao Jiang ,&nbsp;Yiran Teng ,&nbsp;Hong Ping ,&nbsp;Wenjing Li ,&nbsp;Ejigu Alemu Guadie ,&nbsp;Fei Teng","doi":"10.1016/j.jpowsour.2025.238616","DOIUrl":null,"url":null,"abstract":"<div><div>Water electrolysis driven by renewable energy sources is a green, sustainable hydrogen production method. However, industrial hydrogen production via water electrolysis is challenged by its high cost, high energy consumption and low conversion efficiency. It is urgently necessary to develop efficient, stable, and inexpensive electrocatalysts at ampere-level current densities. In this study, we mainly reveal the gas mass transfer effect under ampere-level current densities during water electrolysis. Typically, we synthesize FeNi-MOF through a simple method. Meanwhile, the Fe<sub>1</sub>Ni<sub>1</sub>P-C electrocatalyst is synthesized through phosphidation of the FeNi-MOF precursor. The Fe<sub>1</sub>Ni<sub>1</sub>P-C electrocatalyst demonstrates an excellent electrocatalytic activity in alkaline electrolyte: for the hydrogen evolution reaction (HER), η<sub>10</sub> = 118.2 mV, η<sub>1000</sub> = 301.2 mV, and Tafel slope = 72.44 mV dec<sup>−1</sup>; for the oxygen evolution reaction (OER), η<sub>10</sub> = 90.8 mV, η<sub>1000</sub> = 332.3 mV, and Tafel slope = 68.69 mV dec<sup>−1</sup>. Moreover, Fe<sub>1</sub>Ni<sub>1</sub>P-C exhibits a high stability at a large current density (110 h @ 1000 mA cm<sup>−2</sup>). Density functional theory (DFT) calculations confirm that the components of Fe<sub>1</sub>Ni<sub>1</sub>P-C exhibit gas-phobic behavior toward H<sub>2</sub> and O<sub>2</sub> molecules, effectively suppressing gas bubble accumulation on electrode surfaces and thereby facilitating continuous and steady reactions. This study presents a material design method that effectively enhances stability under high current density through the presence of a gas-repelling structure.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"661 ","pages":"Article 238616"},"PeriodicalIF":7.9000,"publicationDate":"2025-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of gas mass transfer on hydrogen production at ampere-level current densities\",\"authors\":\"Zhisheng Mei ,&nbsp;Tao Jiang ,&nbsp;Yiran Teng ,&nbsp;Hong Ping ,&nbsp;Wenjing Li ,&nbsp;Ejigu Alemu Guadie ,&nbsp;Fei Teng\",\"doi\":\"10.1016/j.jpowsour.2025.238616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Water electrolysis driven by renewable energy sources is a green, sustainable hydrogen production method. However, industrial hydrogen production via water electrolysis is challenged by its high cost, high energy consumption and low conversion efficiency. It is urgently necessary to develop efficient, stable, and inexpensive electrocatalysts at ampere-level current densities. In this study, we mainly reveal the gas mass transfer effect under ampere-level current densities during water electrolysis. Typically, we synthesize FeNi-MOF through a simple method. Meanwhile, the Fe<sub>1</sub>Ni<sub>1</sub>P-C electrocatalyst is synthesized through phosphidation of the FeNi-MOF precursor. The Fe<sub>1</sub>Ni<sub>1</sub>P-C electrocatalyst demonstrates an excellent electrocatalytic activity in alkaline electrolyte: for the hydrogen evolution reaction (HER), η<sub>10</sub> = 118.2 mV, η<sub>1000</sub> = 301.2 mV, and Tafel slope = 72.44 mV dec<sup>−1</sup>; for the oxygen evolution reaction (OER), η<sub>10</sub> = 90.8 mV, η<sub>1000</sub> = 332.3 mV, and Tafel slope = 68.69 mV dec<sup>−1</sup>. Moreover, Fe<sub>1</sub>Ni<sub>1</sub>P-C exhibits a high stability at a large current density (110 h @ 1000 mA cm<sup>−2</sup>). Density functional theory (DFT) calculations confirm that the components of Fe<sub>1</sub>Ni<sub>1</sub>P-C exhibit gas-phobic behavior toward H<sub>2</sub> and O<sub>2</sub> molecules, effectively suppressing gas bubble accumulation on electrode surfaces and thereby facilitating continuous and steady reactions. This study presents a material design method that effectively enhances stability under high current density through the presence of a gas-repelling structure.</div></div>\",\"PeriodicalId\":377,\"journal\":{\"name\":\"Journal of Power Sources\",\"volume\":\"661 \",\"pages\":\"Article 238616\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378775325024528\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775325024528","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

可再生能源驱动的水电解是一种绿色、可持续的制氢方法。然而,工业用水电解制氢成本高、能耗高、转化效率低。迫切需要开发高效、稳定、廉价的安培级电流密度电催化剂。在本研究中,我们主要揭示了在安培级电流密度下电解过程中的气体传质效应。通常,我们通过简单的方法合成FeNi-MOF。同时,将FeNi-MOF前驱体进行磷化,合成Fe1Ni1P-C电催化剂。Fe1Ni1P-C电催化剂在碱性电解质中表现出良好的电催化活性:析氢反应(HER)的η10 = 118.2 mV, η1000 = 301.2 mV, Tafel斜率= 72.44 mV dec−1;析氧反应(OER)的η10 = 90.8 mV, η1000 = 332.3 mV, Tafel斜率= 68.69 mV dec−1。此外,Fe1Ni1P-C在大电流密度(110 h @ 1000 mA cm−2)下具有很高的稳定性。密度泛函理论(DFT)计算证实,Fe1Ni1P-C组分对H2和O2分子表现出疏气行为,有效抑制了电极表面的气泡积聚,从而促进了连续稳定的反应。本研究提出了一种材料设计方法,通过气体排斥结构的存在,有效地提高了高电流密度下的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of gas mass transfer on hydrogen production at ampere-level current densities

Effect of gas mass transfer on hydrogen production at ampere-level current densities
Water electrolysis driven by renewable energy sources is a green, sustainable hydrogen production method. However, industrial hydrogen production via water electrolysis is challenged by its high cost, high energy consumption and low conversion efficiency. It is urgently necessary to develop efficient, stable, and inexpensive electrocatalysts at ampere-level current densities. In this study, we mainly reveal the gas mass transfer effect under ampere-level current densities during water electrolysis. Typically, we synthesize FeNi-MOF through a simple method. Meanwhile, the Fe1Ni1P-C electrocatalyst is synthesized through phosphidation of the FeNi-MOF precursor. The Fe1Ni1P-C electrocatalyst demonstrates an excellent electrocatalytic activity in alkaline electrolyte: for the hydrogen evolution reaction (HER), η10 = 118.2 mV, η1000 = 301.2 mV, and Tafel slope = 72.44 mV dec−1; for the oxygen evolution reaction (OER), η10 = 90.8 mV, η1000 = 332.3 mV, and Tafel slope = 68.69 mV dec−1. Moreover, Fe1Ni1P-C exhibits a high stability at a large current density (110 h @ 1000 mA cm−2). Density functional theory (DFT) calculations confirm that the components of Fe1Ni1P-C exhibit gas-phobic behavior toward H2 and O2 molecules, effectively suppressing gas bubble accumulation on electrode surfaces and thereby facilitating continuous and steady reactions. This study presents a material design method that effectively enhances stability under high current density through the presence of a gas-repelling structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信