提出了一种基于傅里叶变换的时空融合算法,用于生成20 m空间分辨率的地表土壤日湿度

IF 6.6 1区 农林科学 Q1 SOIL SCIENCE
Xuqian Bai , Zhitao Zhang , Haorui Chen , Long Qian , Tianjin Dai , Ruiqi Li , Shuailong Fan , Sisi Jing , Junying Chen , Maosheng Ge
{"title":"提出了一种基于傅里叶变换的时空融合算法,用于生成20 m空间分辨率的地表土壤日湿度","authors":"Xuqian Bai ,&nbsp;Zhitao Zhang ,&nbsp;Haorui Chen ,&nbsp;Long Qian ,&nbsp;Tianjin Dai ,&nbsp;Ruiqi Li ,&nbsp;Shuailong Fan ,&nbsp;Sisi Jing ,&nbsp;Junying Chen ,&nbsp;Maosheng Ge","doi":"10.1016/j.geoderma.2025.117548","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate soil moisture data with detailed spatial and temporal resolutions are essential for hydrological modeling, precision agriculture, and climate research. Nonetheless, the intrinsic trade-off between spatial and temporal resolution in remote sensing limits the accessibility of soil moisture products at granular scales. This study presents a spatiotemporal fusion algorithm utilizing Fourier transform (STFFT), integrated with Random Forest (RF), the Water Cloud Model (WCM), and the radiative transfer model (PROSAIL) to create a comprehensive framework for downscaling surface soil moisture (SSM). Employing Sentinel-1 and Sentinel-2 datasets, we downscaled Soil Moisture Active and Passive (SMAP) soil moisture products to generate daily Soil Surface Moisture (SSM) maps at a 20-meter spatial resolution for the study area. The findings indicate that STFFT is more adept at accommodating SSM data marked by significant heterogeneity and scale discrepancies compared to traditional spatiotemporal fusion algorithms. Furthermore, STFFT exhibits computational efficiency and is independent of reference image selection. The amalgamation of RF with WCM and PROSAIL adeptly elucidates the intricate correlations between remote sensing variables and soil moisture; the suggested framework attains precise soil moisture mapping, evidenced by an average correlation coefficient (R) of 0.892 and a root mean square error (RMSE) of 0.034 m<sup>3</sup>/m<sup>3</sup> across diverse land cover types. Compared to benchmark methods that produce an average R of 0.753 and an RMSE of 0.043 m<sup>3</sup>/m<sup>3</sup>, STFFT demonstrates markedly enhanced accuracy and robustness, particularly in heterogeneous terrains. This study introduces an improved methodology for producing fine-scale soil moisture products characterized by enhanced spatiotemporal continuity and reliability.</div></div>","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":"463 ","pages":"Article 117548"},"PeriodicalIF":6.6000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A spatiotemporal fusion algorithm based on Fourier transform is developed to generate daily surface soil moisture with 20 m spatial resolution\",\"authors\":\"Xuqian Bai ,&nbsp;Zhitao Zhang ,&nbsp;Haorui Chen ,&nbsp;Long Qian ,&nbsp;Tianjin Dai ,&nbsp;Ruiqi Li ,&nbsp;Shuailong Fan ,&nbsp;Sisi Jing ,&nbsp;Junying Chen ,&nbsp;Maosheng Ge\",\"doi\":\"10.1016/j.geoderma.2025.117548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate soil moisture data with detailed spatial and temporal resolutions are essential for hydrological modeling, precision agriculture, and climate research. Nonetheless, the intrinsic trade-off between spatial and temporal resolution in remote sensing limits the accessibility of soil moisture products at granular scales. This study presents a spatiotemporal fusion algorithm utilizing Fourier transform (STFFT), integrated with Random Forest (RF), the Water Cloud Model (WCM), and the radiative transfer model (PROSAIL) to create a comprehensive framework for downscaling surface soil moisture (SSM). Employing Sentinel-1 and Sentinel-2 datasets, we downscaled Soil Moisture Active and Passive (SMAP) soil moisture products to generate daily Soil Surface Moisture (SSM) maps at a 20-meter spatial resolution for the study area. The findings indicate that STFFT is more adept at accommodating SSM data marked by significant heterogeneity and scale discrepancies compared to traditional spatiotemporal fusion algorithms. Furthermore, STFFT exhibits computational efficiency and is independent of reference image selection. The amalgamation of RF with WCM and PROSAIL adeptly elucidates the intricate correlations between remote sensing variables and soil moisture; the suggested framework attains precise soil moisture mapping, evidenced by an average correlation coefficient (R) of 0.892 and a root mean square error (RMSE) of 0.034 m<sup>3</sup>/m<sup>3</sup> across diverse land cover types. Compared to benchmark methods that produce an average R of 0.753 and an RMSE of 0.043 m<sup>3</sup>/m<sup>3</sup>, STFFT demonstrates markedly enhanced accuracy and robustness, particularly in heterogeneous terrains. This study introduces an improved methodology for producing fine-scale soil moisture products characterized by enhanced spatiotemporal continuity and reliability.</div></div>\",\"PeriodicalId\":12511,\"journal\":{\"name\":\"Geoderma\",\"volume\":\"463 \",\"pages\":\"Article 117548\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoderma\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016706125003891\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016706125003891","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

具有详细时空分辨率的精确土壤水分数据对于水文建模、精准农业和气候研究至关重要。然而,空间和时间分辨率之间的内在权衡限制了土壤水分产品在颗粒尺度上的可及性。本文提出了一种利用傅里叶变换(STFFT)的时空融合算法,结合随机森林(RF)、水云模型(WCM)和辐射传输模型(PROSAIL),创建了一个综合框架,用于降低地表土壤湿度(SSM)的尺度。利用Sentinel-1和Sentinel-2数据集,我们将土壤湿度主动和被动(SMAP)土壤湿度产品降尺度,生成研究区20米空间分辨率的日土壤表面湿度(SSM)地图。研究结果表明,与传统的时空融合算法相比,STFFT更擅长适应具有显著异质性和尺度差异的SSM数据。此外,STFFT具有计算效率,并且不依赖于参考图像的选择。RF与WCM和PROSAIL的融合巧妙地阐明了遥感变量与土壤湿度之间的复杂相关性;不同土地覆盖类型的平均相关系数(R)为0.892,均方根误差(RMSE)为0.034 m3/m3。与平均R为0.753、RMSE为0.043 m3/m3的基准方法相比,STFFT的准确性和鲁棒性显著提高,特别是在非均匀地形中。本文介绍了一种改进的方法,用于生产具有增强时空连续性和可靠性的精细尺度土壤水分产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A spatiotemporal fusion algorithm based on Fourier transform is developed to generate daily surface soil moisture with 20 m spatial resolution
Accurate soil moisture data with detailed spatial and temporal resolutions are essential for hydrological modeling, precision agriculture, and climate research. Nonetheless, the intrinsic trade-off between spatial and temporal resolution in remote sensing limits the accessibility of soil moisture products at granular scales. This study presents a spatiotemporal fusion algorithm utilizing Fourier transform (STFFT), integrated with Random Forest (RF), the Water Cloud Model (WCM), and the radiative transfer model (PROSAIL) to create a comprehensive framework for downscaling surface soil moisture (SSM). Employing Sentinel-1 and Sentinel-2 datasets, we downscaled Soil Moisture Active and Passive (SMAP) soil moisture products to generate daily Soil Surface Moisture (SSM) maps at a 20-meter spatial resolution for the study area. The findings indicate that STFFT is more adept at accommodating SSM data marked by significant heterogeneity and scale discrepancies compared to traditional spatiotemporal fusion algorithms. Furthermore, STFFT exhibits computational efficiency and is independent of reference image selection. The amalgamation of RF with WCM and PROSAIL adeptly elucidates the intricate correlations between remote sensing variables and soil moisture; the suggested framework attains precise soil moisture mapping, evidenced by an average correlation coefficient (R) of 0.892 and a root mean square error (RMSE) of 0.034 m3/m3 across diverse land cover types. Compared to benchmark methods that produce an average R of 0.753 and an RMSE of 0.043 m3/m3, STFFT demonstrates markedly enhanced accuracy and robustness, particularly in heterogeneous terrains. This study introduces an improved methodology for producing fine-scale soil moisture products characterized by enhanced spatiotemporal continuity and reliability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geoderma
Geoderma 农林科学-土壤科学
CiteScore
11.80
自引率
6.60%
发文量
597
审稿时长
58 days
期刊介绍: Geoderma - the global journal of soil science - welcomes authors, readers and soil research from all parts of the world, encourages worldwide soil studies, and embraces all aspects of soil science and its associated pedagogy. The journal particularly welcomes interdisciplinary work focusing on dynamic soil processes and functions across space and time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信