先进的数字技术应用于露头模型:整合局部二进制模式(LBP)和卷积神经网络(CNN),以支持阿根廷Salta盆地储层类似物的地层和沉积学解释

IF 3.6 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Eduardo Roemers-Oliveira , Sophie Viseur , François Fournier , Ítalo Gomes Gonçalves , Felipe Guadagnin , Guilherme Pederneiras Raja Gabaglia , Ednilson Bento Freire , Daniel Galvão Carnier Fragoso , Juan Ignacio Hernández , Ana Clara Freccia , Guilherme de Godoy Rangel
{"title":"先进的数字技术应用于露头模型:整合局部二进制模式(LBP)和卷积神经网络(CNN),以支持阿根廷Salta盆地储层类似物的地层和沉积学解释","authors":"Eduardo Roemers-Oliveira ,&nbsp;Sophie Viseur ,&nbsp;François Fournier ,&nbsp;Ítalo Gomes Gonçalves ,&nbsp;Felipe Guadagnin ,&nbsp;Guilherme Pederneiras Raja Gabaglia ,&nbsp;Ednilson Bento Freire ,&nbsp;Daniel Galvão Carnier Fragoso ,&nbsp;Juan Ignacio Hernández ,&nbsp;Ana Clara Freccia ,&nbsp;Guilherme de Godoy Rangel","doi":"10.1016/j.marpetgeo.2025.107623","DOIUrl":null,"url":null,"abstract":"<div><div>Digital Outcrop Models (DOMs), empowered by advanced digital techniques, have revolutionized the study of outcrop analogs for petroleum reservoir characterization by enabling the extraction of key quantitative parameters for modeling. The limited availability of subsurface data often constrains reservoir characterization, making outcrop analogs essential tools for improving geological models. The analogs bridge the gap between borehole-derived information and regional-scale seismic data, providing crucial mesoscale insights. In this context, this study proposes an integrative workflow combining high-resolution sequence stratigraphy (HRSS) with digital techniques to enhance the understanding of depositional settings and extract data from the Balbuena III Sequence of the Salta Basin, Argentina, a well-established stratigraphic basin analog for Brazilian pre-salt carbonate reservoirs. The workflow combines traditional field-based methods with advanced digital techniques applied to photogrammetric data, including Local Binary Pattern (LBP) analysis and Convolutional Neural Networks (CNNs). LBP analysis correlated with stratigraphic interpretation demonstrated promising potential for characterizing the high-frequency cyclicity observed in the study area. CNN-based segmentation classified and delineated eleven lithofacies, including carbonate, siliciclastic, mixed, and volcanic facies. This segmentation allows for the generation of lithofacies-classified 3D point clouds and a detailed spatial representation of facies distribution across the outcrop. Digital approaches enable more in-depth analysis by increasing efficiency, accuracy, and the capacity to analyze large datasets. By combining digital and traditional methods, this work improves the analysis of outcrop analogs, which contributes to more accurate geological modeling and enhances the predictive capability of petroleum fields and hydrocarbon recovery.</div></div>","PeriodicalId":18189,"journal":{"name":"Marine and Petroleum Geology","volume":"183 ","pages":"Article 107623"},"PeriodicalIF":3.6000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced digital techniques applied to outcrop models: Integrating Local Binary Pattern (LBP) and Convolutional Neural Network (CNN) to support stratigraphic and sedimentological interpretation of reservoir analogs in the Salta Basin, Argentina\",\"authors\":\"Eduardo Roemers-Oliveira ,&nbsp;Sophie Viseur ,&nbsp;François Fournier ,&nbsp;Ítalo Gomes Gonçalves ,&nbsp;Felipe Guadagnin ,&nbsp;Guilherme Pederneiras Raja Gabaglia ,&nbsp;Ednilson Bento Freire ,&nbsp;Daniel Galvão Carnier Fragoso ,&nbsp;Juan Ignacio Hernández ,&nbsp;Ana Clara Freccia ,&nbsp;Guilherme de Godoy Rangel\",\"doi\":\"10.1016/j.marpetgeo.2025.107623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Digital Outcrop Models (DOMs), empowered by advanced digital techniques, have revolutionized the study of outcrop analogs for petroleum reservoir characterization by enabling the extraction of key quantitative parameters for modeling. The limited availability of subsurface data often constrains reservoir characterization, making outcrop analogs essential tools for improving geological models. The analogs bridge the gap between borehole-derived information and regional-scale seismic data, providing crucial mesoscale insights. In this context, this study proposes an integrative workflow combining high-resolution sequence stratigraphy (HRSS) with digital techniques to enhance the understanding of depositional settings and extract data from the Balbuena III Sequence of the Salta Basin, Argentina, a well-established stratigraphic basin analog for Brazilian pre-salt carbonate reservoirs. The workflow combines traditional field-based methods with advanced digital techniques applied to photogrammetric data, including Local Binary Pattern (LBP) analysis and Convolutional Neural Networks (CNNs). LBP analysis correlated with stratigraphic interpretation demonstrated promising potential for characterizing the high-frequency cyclicity observed in the study area. CNN-based segmentation classified and delineated eleven lithofacies, including carbonate, siliciclastic, mixed, and volcanic facies. This segmentation allows for the generation of lithofacies-classified 3D point clouds and a detailed spatial representation of facies distribution across the outcrop. Digital approaches enable more in-depth analysis by increasing efficiency, accuracy, and the capacity to analyze large datasets. By combining digital and traditional methods, this work improves the analysis of outcrop analogs, which contributes to more accurate geological modeling and enhances the predictive capability of petroleum fields and hydrocarbon recovery.</div></div>\",\"PeriodicalId\":18189,\"journal\":{\"name\":\"Marine and Petroleum Geology\",\"volume\":\"183 \",\"pages\":\"Article 107623\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine and Petroleum Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S026481722500340X\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine and Petroleum Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026481722500340X","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

数字露头模型(dom)在先进的数字技术的支持下,通过提取关键的定量参数进行建模,彻底改变了石油储层特征的露头模拟研究。地下数据的有限可用性往往限制了储层的表征,使露头类似物成为改进地质模型的必要工具。类似物弥补了井眼数据和区域尺度地震数据之间的差距,提供了关键的中尺度信息。在此背景下,本研究提出了一种将高分辨率层序地层学(HRSS)与数字技术相结合的综合工作流程,以增强对沉积环境的理解,并从阿根廷Salta盆地的Balbuena III层序中提取数据,该层序是巴西盐下碳酸盐岩储层的成熟地层盆地模拟物。该工作流程将传统的基于现场的方法与应用于摄影测量数据的先进数字技术相结合,包括局部二值模式(LBP)分析和卷积神经网络(cnn)。LBP分析与地层解释相结合,对研究区观测到的高频旋回性进行了表征。基于cnn的分段划分并圈定了11种岩相,包括碳酸盐相、硅屑相、混合相和火山相。这种分割允许生成岩相分类的3D点云,以及整个露头相分布的详细空间表示。通过提高效率、准确性和分析大型数据集的能力,数字化方法可以进行更深入的分析。通过将数字方法与传统方法相结合,改进了露头模拟物的分析方法,提高了地质建模精度,提高了油田和油气采收率的预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced digital techniques applied to outcrop models: Integrating Local Binary Pattern (LBP) and Convolutional Neural Network (CNN) to support stratigraphic and sedimentological interpretation of reservoir analogs in the Salta Basin, Argentina
Digital Outcrop Models (DOMs), empowered by advanced digital techniques, have revolutionized the study of outcrop analogs for petroleum reservoir characterization by enabling the extraction of key quantitative parameters for modeling. The limited availability of subsurface data often constrains reservoir characterization, making outcrop analogs essential tools for improving geological models. The analogs bridge the gap between borehole-derived information and regional-scale seismic data, providing crucial mesoscale insights. In this context, this study proposes an integrative workflow combining high-resolution sequence stratigraphy (HRSS) with digital techniques to enhance the understanding of depositional settings and extract data from the Balbuena III Sequence of the Salta Basin, Argentina, a well-established stratigraphic basin analog for Brazilian pre-salt carbonate reservoirs. The workflow combines traditional field-based methods with advanced digital techniques applied to photogrammetric data, including Local Binary Pattern (LBP) analysis and Convolutional Neural Networks (CNNs). LBP analysis correlated with stratigraphic interpretation demonstrated promising potential for characterizing the high-frequency cyclicity observed in the study area. CNN-based segmentation classified and delineated eleven lithofacies, including carbonate, siliciclastic, mixed, and volcanic facies. This segmentation allows for the generation of lithofacies-classified 3D point clouds and a detailed spatial representation of facies distribution across the outcrop. Digital approaches enable more in-depth analysis by increasing efficiency, accuracy, and the capacity to analyze large datasets. By combining digital and traditional methods, this work improves the analysis of outcrop analogs, which contributes to more accurate geological modeling and enhances the predictive capability of petroleum fields and hydrocarbon recovery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Marine and Petroleum Geology
Marine and Petroleum Geology 地学-地球科学综合
CiteScore
8.80
自引率
14.30%
发文量
475
审稿时长
63 days
期刊介绍: Marine and Petroleum Geology is the pre-eminent international forum for the exchange of multidisciplinary concepts, interpretations and techniques for all concerned with marine and petroleum geology in industry, government and academia. Rapid bimonthly publication allows early communications of papers or short communications to the geoscience community. Marine and Petroleum Geology is essential reading for geologists, geophysicists and explorationists in industry, government and academia working in the following areas: marine geology; basin analysis and evaluation; organic geochemistry; reserve/resource estimation; seismic stratigraphy; thermal models of basic evolution; sedimentary geology; continental margins; geophysical interpretation; structural geology/tectonics; formation evaluation techniques; well logging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信