{"title":"晶体生长调节剂对拜耳沉淀池中泡沫的影响分析","authors":"Lei Xu, Wen-mi Chen, Shang Fan, Yan-jun Zhang","doi":"10.1016/j.hydromet.2025.106595","DOIUrl":null,"url":null,"abstract":"<div><div>Foam generation in Bayer precipitation tanks is a major issue that affects the energy efficiency of precipitation in these tanks. However, the factors contributing to foam generation remain poorly understood. This work investigated the relationship between different crystal growth modifiers (CGMs) and foam generation during the precipitation process. Results indicate that in pure sodium aluminate solution, the addition of CGMs directly affects the foam volume. Furthermore, the foam generation potential (FGP) of CGMs varies significantly. CGM-A and CGM-B exhibited minimal FGPs at concentrations up to 300 mg/L in sodium aluminate solution containing aluminum tri-hydroxide (ATH) solids, resulting in practically no foam. In contrast, CGM-C presented stronger FGP at 100 mg/L, generating 8 mL of foam. The FGP of CGMs increased following high-temperature treatment at 260 °C. The FT-IR, GC–MS, and <sup>1</sup>H NMR analyses indicated that the large amounts of unsaturated fatty acids in CGM-C were a major cause of foaming. After high-temperature treatment, numerous alkane molecules were generated in the CGM-C, which served as foam stabilizers. This study provides valuable reference for further improvement of the alumina production capacity.</div></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":"239 ","pages":"Article 106595"},"PeriodicalIF":4.8000,"publicationDate":"2025-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyses of foam in Bayer precipitation tanks due to crystal growth modifiers\",\"authors\":\"Lei Xu, Wen-mi Chen, Shang Fan, Yan-jun Zhang\",\"doi\":\"10.1016/j.hydromet.2025.106595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Foam generation in Bayer precipitation tanks is a major issue that affects the energy efficiency of precipitation in these tanks. However, the factors contributing to foam generation remain poorly understood. This work investigated the relationship between different crystal growth modifiers (CGMs) and foam generation during the precipitation process. Results indicate that in pure sodium aluminate solution, the addition of CGMs directly affects the foam volume. Furthermore, the foam generation potential (FGP) of CGMs varies significantly. CGM-A and CGM-B exhibited minimal FGPs at concentrations up to 300 mg/L in sodium aluminate solution containing aluminum tri-hydroxide (ATH) solids, resulting in practically no foam. In contrast, CGM-C presented stronger FGP at 100 mg/L, generating 8 mL of foam. The FGP of CGMs increased following high-temperature treatment at 260 °C. The FT-IR, GC–MS, and <sup>1</sup>H NMR analyses indicated that the large amounts of unsaturated fatty acids in CGM-C were a major cause of foaming. After high-temperature treatment, numerous alkane molecules were generated in the CGM-C, which served as foam stabilizers. This study provides valuable reference for further improvement of the alumina production capacity.</div></div>\",\"PeriodicalId\":13193,\"journal\":{\"name\":\"Hydrometallurgy\",\"volume\":\"239 \",\"pages\":\"Article 106595\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrometallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304386X25001604\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrometallurgy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304386X25001604","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Analyses of foam in Bayer precipitation tanks due to crystal growth modifiers
Foam generation in Bayer precipitation tanks is a major issue that affects the energy efficiency of precipitation in these tanks. However, the factors contributing to foam generation remain poorly understood. This work investigated the relationship between different crystal growth modifiers (CGMs) and foam generation during the precipitation process. Results indicate that in pure sodium aluminate solution, the addition of CGMs directly affects the foam volume. Furthermore, the foam generation potential (FGP) of CGMs varies significantly. CGM-A and CGM-B exhibited minimal FGPs at concentrations up to 300 mg/L in sodium aluminate solution containing aluminum tri-hydroxide (ATH) solids, resulting in practically no foam. In contrast, CGM-C presented stronger FGP at 100 mg/L, generating 8 mL of foam. The FGP of CGMs increased following high-temperature treatment at 260 °C. The FT-IR, GC–MS, and 1H NMR analyses indicated that the large amounts of unsaturated fatty acids in CGM-C were a major cause of foaming. After high-temperature treatment, numerous alkane molecules were generated in the CGM-C, which served as foam stabilizers. This study provides valuable reference for further improvement of the alumina production capacity.
期刊介绍:
Hydrometallurgy aims to compile studies on novel processes, process design, chemistry, modelling, control, economics and interfaces between unit operations, and to provide a forum for discussions on case histories and operational difficulties.
Topics covered include: leaching of metal values by chemical reagents or bacterial action at ambient or elevated pressures and temperatures; separation of solids from leach liquors; removal of impurities and recovery of metal values by precipitation, ion exchange, solvent extraction, gaseous reduction, cementation, electro-winning and electro-refining; pre-treatment of ores by roasting or chemical treatments such as halogenation or reduction; recycling of reagents and treatment of effluents.