分层微孔通道复合蒸发器毛细管驱动蒸发换热特性的数值模拟

IF 5.8 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Jiaxi Du , Sirong Qu , Bin Ran , Wenqiang Tong , Zhihang Yu , Jialin Liang , Huizhu Yang , Yue Yang , Binjian Ma , Yonggang Zhu
{"title":"分层微孔通道复合蒸发器毛细管驱动蒸发换热特性的数值模拟","authors":"Jiaxi Du ,&nbsp;Sirong Qu ,&nbsp;Bin Ran ,&nbsp;Wenqiang Tong ,&nbsp;Zhihang Yu ,&nbsp;Jialin Liang ,&nbsp;Huizhu Yang ,&nbsp;Yue Yang ,&nbsp;Binjian Ma ,&nbsp;Yonggang Zhu","doi":"10.1016/j.ijheatmasstransfer.2025.127958","DOIUrl":null,"url":null,"abstract":"<div><div>Hierarchical evaporators have emerged as an important technology for high heat flux thermal management in modern electronics through capillary-driven evaporation mechanisms. Current implementations predominantly employ nano-scale structures that achieve exceptional heat transfer performance, yet their characteristic sub-micron dimensions impose severe permeability constraints, fundamentally limiting applicability to chip-scale systems (&gt;10 mm²). To elucidate the thermal-flow coupling mechanisms in advanced fabrication-enabled hierarchical evaporators, this study conducts systematic numerical investigations addressing critical knowledge gaps in their microstructural design principles. A dual-scale computational framework is developed to resolve the coupled heat transfer and capillary flow dynamics, and to further analyze the combined influence of key geometric design parameters across microstructural features and system-level configurations. The maximum dry-out heat flux is achieved at an aspect ratio of nearly unity by balancing capillary and viscous effects. The optimized evaporator design demonstrates stable operation at 154.5 W/cm² with a heat transfer coefficient of 97.19 kW/(m²K), outperforming conventional micropillar-based systems while maintaining compatibility with industrial manufacturing standards. These findings establish essential design principles for next-generation phase-change thermal management devices that simultaneously address thermal performance, scalability, and production feasibility challenges.</div></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":"256 ","pages":"Article 127958"},"PeriodicalIF":5.8000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation of the capillary-driven evaporative heat transfer characteristics of hierarchical micro pore-channel composite evaporators\",\"authors\":\"Jiaxi Du ,&nbsp;Sirong Qu ,&nbsp;Bin Ran ,&nbsp;Wenqiang Tong ,&nbsp;Zhihang Yu ,&nbsp;Jialin Liang ,&nbsp;Huizhu Yang ,&nbsp;Yue Yang ,&nbsp;Binjian Ma ,&nbsp;Yonggang Zhu\",\"doi\":\"10.1016/j.ijheatmasstransfer.2025.127958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hierarchical evaporators have emerged as an important technology for high heat flux thermal management in modern electronics through capillary-driven evaporation mechanisms. Current implementations predominantly employ nano-scale structures that achieve exceptional heat transfer performance, yet their characteristic sub-micron dimensions impose severe permeability constraints, fundamentally limiting applicability to chip-scale systems (&gt;10 mm²). To elucidate the thermal-flow coupling mechanisms in advanced fabrication-enabled hierarchical evaporators, this study conducts systematic numerical investigations addressing critical knowledge gaps in their microstructural design principles. A dual-scale computational framework is developed to resolve the coupled heat transfer and capillary flow dynamics, and to further analyze the combined influence of key geometric design parameters across microstructural features and system-level configurations. The maximum dry-out heat flux is achieved at an aspect ratio of nearly unity by balancing capillary and viscous effects. The optimized evaporator design demonstrates stable operation at 154.5 W/cm² with a heat transfer coefficient of 97.19 kW/(m²K), outperforming conventional micropillar-based systems while maintaining compatibility with industrial manufacturing standards. These findings establish essential design principles for next-generation phase-change thermal management devices that simultaneously address thermal performance, scalability, and production feasibility challenges.</div></div>\",\"PeriodicalId\":336,\"journal\":{\"name\":\"International Journal of Heat and Mass Transfer\",\"volume\":\"256 \",\"pages\":\"Article 127958\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0017931025012931\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0017931025012931","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

分层蒸发器是利用毛细管驱动的蒸发机制实现高热流密度热管理的一种重要技术。目前的实现主要采用纳米级结构来实现卓越的传热性能,但其亚微米尺寸的特征施加了严重的渗透率限制,从根本上限制了芯片级系统(>10 mm²)的适用性。为了阐明先进制造分层蒸发器中的热流耦合机制,本研究进行了系统的数值研究,解决了其微结构设计原理中的关键知识空白。开发了双尺度计算框架来求解耦合传热和毛细流动动力学,并进一步分析关键几何设计参数跨微观结构特征和系统级配置的综合影响。通过平衡毛细效应和粘性效应,在长径比接近统一的情况下获得最大干热通量。优化后的蒸发器设计在154.5 W/cm²时稳定运行,传热系数为97.19 kW/(m²K),优于传统的基于微柱的系统,同时保持与工业制造标准的兼容性。这些发现为下一代相变热管理器件建立了基本的设计原则,同时解决了热性能、可扩展性和生产可行性方面的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical simulation of the capillary-driven evaporative heat transfer characteristics of hierarchical micro pore-channel composite evaporators
Hierarchical evaporators have emerged as an important technology for high heat flux thermal management in modern electronics through capillary-driven evaporation mechanisms. Current implementations predominantly employ nano-scale structures that achieve exceptional heat transfer performance, yet their characteristic sub-micron dimensions impose severe permeability constraints, fundamentally limiting applicability to chip-scale systems (>10 mm²). To elucidate the thermal-flow coupling mechanisms in advanced fabrication-enabled hierarchical evaporators, this study conducts systematic numerical investigations addressing critical knowledge gaps in their microstructural design principles. A dual-scale computational framework is developed to resolve the coupled heat transfer and capillary flow dynamics, and to further analyze the combined influence of key geometric design parameters across microstructural features and system-level configurations. The maximum dry-out heat flux is achieved at an aspect ratio of nearly unity by balancing capillary and viscous effects. The optimized evaporator design demonstrates stable operation at 154.5 W/cm² with a heat transfer coefficient of 97.19 kW/(m²K), outperforming conventional micropillar-based systems while maintaining compatibility with industrial manufacturing standards. These findings establish essential design principles for next-generation phase-change thermal management devices that simultaneously address thermal performance, scalability, and production feasibility challenges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
13.50%
发文量
1319
审稿时长
41 days
期刊介绍: International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems. Topics include: -New methods of measuring and/or correlating transport-property data -Energy engineering -Environmental applications of heat and/or mass transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信