抽象论证中的约束和基于提升(条件)的偏好

IF 4.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Gianvincenzo Alfano, Sergio Greco, Francesco Parisi, Irina Trubitsyna
{"title":"抽象论证中的约束和基于提升(条件)的偏好","authors":"Gianvincenzo Alfano,&nbsp;Sergio Greco,&nbsp;Francesco Parisi,&nbsp;Irina Trubitsyna","doi":"10.1016/j.artint.2025.104437","DOIUrl":null,"url":null,"abstract":"<div><div>Dealing with controversial information is an important issue in several application contexts. Formal argumentation enables reasoning on arguments for and against a claim to decide on an outcome. Abstract Argumentation Framework (AF) has emerged as a central formalism in argument-based reasoning. In recent years there has been an increasing interest in extending AF to facilitate the knowledge representation and reasoning process. In this paper, we present an extension of AF that allows for the representation of labelled constraints and labelled preferences. A labelled argument is of the form <span><math><mrow><mi>in</mi></mrow><mo>(</mo><mi>a</mi><mo>)</mo></math></span>, <span><math><mrow><mi>out</mi></mrow><mo>(</mo><mi>a</mi><mo>)</mo></math></span>, or <span><math><mrow><mi>und</mi></mrow><mo>(</mo><mi>a</mi><mo>)</mo></math></span>, where <em>a</em> is an argument, whereas <strong>in</strong>, <strong>out</strong>, and <strong>und</strong> denote the acceptance status (i.e., accepted, rejected, undecided, respectively) of the specified argument. We start by considering an extension of AF with labelled constraints, namely <em>Labelled Constrained AF</em> (LCAF), then we focus on AF with labelled preferences (<em>Labelled Preference-based AF</em>, LPAF for short) and, finally, we introduce a general framework called <em>Labelled Preference-based Constrained AF</em> (LPCAF) that combines AF, labelled constraints, and labelled preferences. We also investigate an extension of AF with labelled conditional (or extended) preferences, namely <em>Labelled extended Preference-based AF</em> (LePAF), and its further combination with labelled constraints (<em>Labelled extended Preference-based Constrained AF</em>, LePCAF for short). Herein, conditional preferences are of the form <span><math><mi>a</mi><mo>&gt;</mo><mi>b</mi><mo>←</mo></math></span> <em>body</em>, where <strong>a</strong> and <strong>b</strong> are labelled arguments, whereas <em>body</em> is a propositional formula over labelled arguments. For each framework, we define its syntax and semantics, and investigate the computational complexity of four canonical argumentation problems: <em>existence</em>, <em>verification</em>, and <em>credulous</em> and <em>skeptical acceptance</em>, under the well-known <em>complete</em>, <em>stable</em>, <em>semi-stable</em>, and <em>preferred</em> semantics.</div></div>","PeriodicalId":8434,"journal":{"name":"Artificial Intelligence","volume":"349 ","pages":"Article 104437"},"PeriodicalIF":4.6000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constraints and lifting-based (conditional) preferences in abstract argumentation\",\"authors\":\"Gianvincenzo Alfano,&nbsp;Sergio Greco,&nbsp;Francesco Parisi,&nbsp;Irina Trubitsyna\",\"doi\":\"10.1016/j.artint.2025.104437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Dealing with controversial information is an important issue in several application contexts. Formal argumentation enables reasoning on arguments for and against a claim to decide on an outcome. Abstract Argumentation Framework (AF) has emerged as a central formalism in argument-based reasoning. In recent years there has been an increasing interest in extending AF to facilitate the knowledge representation and reasoning process. In this paper, we present an extension of AF that allows for the representation of labelled constraints and labelled preferences. A labelled argument is of the form <span><math><mrow><mi>in</mi></mrow><mo>(</mo><mi>a</mi><mo>)</mo></math></span>, <span><math><mrow><mi>out</mi></mrow><mo>(</mo><mi>a</mi><mo>)</mo></math></span>, or <span><math><mrow><mi>und</mi></mrow><mo>(</mo><mi>a</mi><mo>)</mo></math></span>, where <em>a</em> is an argument, whereas <strong>in</strong>, <strong>out</strong>, and <strong>und</strong> denote the acceptance status (i.e., accepted, rejected, undecided, respectively) of the specified argument. We start by considering an extension of AF with labelled constraints, namely <em>Labelled Constrained AF</em> (LCAF), then we focus on AF with labelled preferences (<em>Labelled Preference-based AF</em>, LPAF for short) and, finally, we introduce a general framework called <em>Labelled Preference-based Constrained AF</em> (LPCAF) that combines AF, labelled constraints, and labelled preferences. We also investigate an extension of AF with labelled conditional (or extended) preferences, namely <em>Labelled extended Preference-based AF</em> (LePAF), and its further combination with labelled constraints (<em>Labelled extended Preference-based Constrained AF</em>, LePCAF for short). Herein, conditional preferences are of the form <span><math><mi>a</mi><mo>&gt;</mo><mi>b</mi><mo>←</mo></math></span> <em>body</em>, where <strong>a</strong> and <strong>b</strong> are labelled arguments, whereas <em>body</em> is a propositional formula over labelled arguments. For each framework, we define its syntax and semantics, and investigate the computational complexity of four canonical argumentation problems: <em>existence</em>, <em>verification</em>, and <em>credulous</em> and <em>skeptical acceptance</em>, under the well-known <em>complete</em>, <em>stable</em>, <em>semi-stable</em>, and <em>preferred</em> semantics.</div></div>\",\"PeriodicalId\":8434,\"journal\":{\"name\":\"Artificial Intelligence\",\"volume\":\"349 \",\"pages\":\"Article 104437\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0004370225001560\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0004370225001560","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在许多应用程序上下文中,处理有争议的信息是一个重要问题。形式论证可以对支持和反对某一主张的论点进行推理,从而决定结果。摘要论证框架(argumentationframework, AF)是基于论证的推理的核心形式主义。近年来,人们对扩展自动识别以促进知识表示和推理过程越来越感兴趣。在本文中,我们提出了AF的扩展,允许标记约束和标记偏好的表示。标记论证的形式是in(A)、out(A)或und(A),其中A是一个论证,而in、out和und表示指定论证的接受状态(即分别是接受、拒绝和未决定)。我们首先考虑具有标记约束的AF的扩展,即标记约束AF (LCAF),然后我们关注具有标记偏好的AF(标记基于偏好的AF,简称LPAF),最后,我们引入一个称为标记基于偏好的约束AF (LPCAF)的一般框架,该框架结合了AF,标记约束和标记偏好。我们还研究了标记条件(或扩展)偏好的AF扩展,即标记扩展的基于偏好的AF (LePAF),以及它与标记约束的进一步结合(标记扩展的基于偏好的约束AF,简称LePCAF)。在这里,条件偏好的形式为a>;b←body,其中a和b是标记参数,而body是标记参数之上的命题公式。对于每个框架,我们定义了它的语法和语义,并研究了四个规范论证问题的计算复杂性:存在、验证、轻信和怀疑接受,在众所周知的完整、稳定、半稳定和首选语义下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constraints and lifting-based (conditional) preferences in abstract argumentation
Dealing with controversial information is an important issue in several application contexts. Formal argumentation enables reasoning on arguments for and against a claim to decide on an outcome. Abstract Argumentation Framework (AF) has emerged as a central formalism in argument-based reasoning. In recent years there has been an increasing interest in extending AF to facilitate the knowledge representation and reasoning process. In this paper, we present an extension of AF that allows for the representation of labelled constraints and labelled preferences. A labelled argument is of the form in(a), out(a), or und(a), where a is an argument, whereas in, out, and und denote the acceptance status (i.e., accepted, rejected, undecided, respectively) of the specified argument. We start by considering an extension of AF with labelled constraints, namely Labelled Constrained AF (LCAF), then we focus on AF with labelled preferences (Labelled Preference-based AF, LPAF for short) and, finally, we introduce a general framework called Labelled Preference-based Constrained AF (LPCAF) that combines AF, labelled constraints, and labelled preferences. We also investigate an extension of AF with labelled conditional (or extended) preferences, namely Labelled extended Preference-based AF (LePAF), and its further combination with labelled constraints (Labelled extended Preference-based Constrained AF, LePCAF for short). Herein, conditional preferences are of the form a>b body, where a and b are labelled arguments, whereas body is a propositional formula over labelled arguments. For each framework, we define its syntax and semantics, and investigate the computational complexity of four canonical argumentation problems: existence, verification, and credulous and skeptical acceptance, under the well-known complete, stable, semi-stable, and preferred semantics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Intelligence
Artificial Intelligence 工程技术-计算机:人工智能
CiteScore
11.20
自引率
1.40%
发文量
118
审稿时长
8 months
期刊介绍: The Journal of Artificial Intelligence (AIJ) welcomes papers covering a broad spectrum of AI topics, including cognition, automated reasoning, computer vision, machine learning, and more. Papers should demonstrate advancements in AI and propose innovative approaches to AI problems. Additionally, the journal accepts papers describing AI applications, focusing on how new methods enhance performance rather than reiterating conventional approaches. In addition to regular papers, AIJ also accepts Research Notes, Research Field Reviews, Position Papers, Book Reviews, and summary papers on AI challenges and competitions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信