PEM水电解过程中阴极条件和膜交叉通量的CFD建模

IF 5.8 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Federico Croci , Leonardo Scialpi , Roberto Biagi , Massimo Borghi , Alessandro d’Adamo
{"title":"PEM水电解过程中阴极条件和膜交叉通量的CFD建模","authors":"Federico Croci ,&nbsp;Leonardo Scialpi ,&nbsp;Roberto Biagi ,&nbsp;Massimo Borghi ,&nbsp;Alessandro d’Adamo","doi":"10.1016/j.ijheatmasstransfer.2025.127971","DOIUrl":null,"url":null,"abstract":"<div><div>Proton Exchange Membrane water electrolysis is a high-relevance technology to accomplish the industrial upscale of green hydrogen generation, addressing the urgency of the ecological transition thanks to its well-known principle and high conversion efficiency. In this study a comprehensive three-dimensional, two-phase Proton Exchange Membrane Electrolysis Cell (PEMEC) model is proposed, with the aim to investigate how different operating conditions influence the cell behaviour. Particular attention is posed on cathode pressure and humidification levels. The model was validated against experimental data showing excellent agreement between simulation results and experimental polarization curves for two working temperatures (333.15 K, 353.15 K), confirming that for an applied electric potential of 2.0 V the current density drops approximately 20 % for the lower temperature. Dry cathode conditions do not affect electrolysis efficiency due to the water electro-osmotic drag flux, which remains largely dominant on the water back-diffusion transport, keeping the polymeric membrane fully hydrated. Pressure increase at the negative electrode leads to slightly higher overpotentials for medium-low current densities (<span><math><mrow><mstyle><mi>Δ</mi></mstyle><msub><mi>E</mi><mrow><mi>O</mi><mi>C</mi><mi>V</mi></mrow></msub><mo>≅</mo><mo>+</mo><mn>0.05156</mn><mspace></mspace><mi>V</mi></mrow></math></span> for <span><math><mrow><msub><mi>p</mi><mi>c</mi></msub><mo>=</mo><mn>30</mn><mspace></mspace><mi>b</mi><mi>a</mi><mi>r</mi></mrow></math></span>) while ohmic losses are reduced allowing similar electrolysis performance for <span><math><mrow><mi>i</mi><mo>&gt;</mo><mn>2.0</mn><mspace></mspace><mi>A</mi><mo>/</mo><mi>c</mi><msup><mrow><mi>m</mi></mrow><mn>2</mn></msup></mrow></math></span>. This means that PEMECs can operate at high efficiencies at optimal conditions for the direct hydrogen storage in specific metal hydrides (MH). Hydrogen cross-flow is highly dependent on the pressure differential and on the flow field, with an increase as the pressure raises and an accumulation in the corner of the serpentine. Even in the most critical condition (<span><math><mrow><msub><mi>p</mi><mi>c</mi></msub><mo>=</mo><mn>30</mn><mspace></mspace><mi>b</mi><mi>a</mi><mi>r</mi></mrow></math></span>) the maximum hydrogen molar concentration (<span><math><mrow><mn>2.4936</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup><mspace></mspace><mi>k</mi><mi>m</mi><mi>o</mi><mi>l</mi><mo>/</mo><msup><mrow><mi>m</mi></mrow><mn>3</mn></msup></mrow></math></span>), remains below the 4 %mol limit of potentially explosive conditions, thus providing a virtual safety indication.</div></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":"256 ","pages":"Article 127971"},"PeriodicalIF":5.8000,"publicationDate":"2025-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CFD modelling of cathode conditions and membrane crossover flux in PEM water electrolysis\",\"authors\":\"Federico Croci ,&nbsp;Leonardo Scialpi ,&nbsp;Roberto Biagi ,&nbsp;Massimo Borghi ,&nbsp;Alessandro d’Adamo\",\"doi\":\"10.1016/j.ijheatmasstransfer.2025.127971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Proton Exchange Membrane water electrolysis is a high-relevance technology to accomplish the industrial upscale of green hydrogen generation, addressing the urgency of the ecological transition thanks to its well-known principle and high conversion efficiency. In this study a comprehensive three-dimensional, two-phase Proton Exchange Membrane Electrolysis Cell (PEMEC) model is proposed, with the aim to investigate how different operating conditions influence the cell behaviour. Particular attention is posed on cathode pressure and humidification levels. The model was validated against experimental data showing excellent agreement between simulation results and experimental polarization curves for two working temperatures (333.15 K, 353.15 K), confirming that for an applied electric potential of 2.0 V the current density drops approximately 20 % for the lower temperature. Dry cathode conditions do not affect electrolysis efficiency due to the water electro-osmotic drag flux, which remains largely dominant on the water back-diffusion transport, keeping the polymeric membrane fully hydrated. Pressure increase at the negative electrode leads to slightly higher overpotentials for medium-low current densities (<span><math><mrow><mstyle><mi>Δ</mi></mstyle><msub><mi>E</mi><mrow><mi>O</mi><mi>C</mi><mi>V</mi></mrow></msub><mo>≅</mo><mo>+</mo><mn>0.05156</mn><mspace></mspace><mi>V</mi></mrow></math></span> for <span><math><mrow><msub><mi>p</mi><mi>c</mi></msub><mo>=</mo><mn>30</mn><mspace></mspace><mi>b</mi><mi>a</mi><mi>r</mi></mrow></math></span>) while ohmic losses are reduced allowing similar electrolysis performance for <span><math><mrow><mi>i</mi><mo>&gt;</mo><mn>2.0</mn><mspace></mspace><mi>A</mi><mo>/</mo><mi>c</mi><msup><mrow><mi>m</mi></mrow><mn>2</mn></msup></mrow></math></span>. This means that PEMECs can operate at high efficiencies at optimal conditions for the direct hydrogen storage in specific metal hydrides (MH). Hydrogen cross-flow is highly dependent on the pressure differential and on the flow field, with an increase as the pressure raises and an accumulation in the corner of the serpentine. Even in the most critical condition (<span><math><mrow><msub><mi>p</mi><mi>c</mi></msub><mo>=</mo><mn>30</mn><mspace></mspace><mi>b</mi><mi>a</mi><mi>r</mi></mrow></math></span>) the maximum hydrogen molar concentration (<span><math><mrow><mn>2.4936</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup><mspace></mspace><mi>k</mi><mi>m</mi><mi>o</mi><mi>l</mi><mo>/</mo><msup><mrow><mi>m</mi></mrow><mn>3</mn></msup></mrow></math></span>), remains below the 4 %mol limit of potentially explosive conditions, thus providing a virtual safety indication.</div></div>\",\"PeriodicalId\":336,\"journal\":{\"name\":\"International Journal of Heat and Mass Transfer\",\"volume\":\"256 \",\"pages\":\"Article 127971\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0017931025013067\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0017931025013067","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

质子交换膜水电解以其众所周知的原理和较高的转化效率,是实现绿色制氢产业化的高相关性技术,解决了生态转型的紧迫性。在这项研究中,提出了一个全面的三维,两相质子交换膜电解电池(PEMEC)模型,旨在研究不同的操作条件如何影响电池的行为。特别注意阴极压力和加湿水平。实验结果表明,在333.15 K和353.15 K两种工作温度下,仿真结果与实验极化曲线吻合良好,证实了当外加电位为2.0 V时,较低温度下电流密度下降约20%。干阴极条件不影响电解效率,因为水的电渗透阻力通量在很大程度上仍然占主导地位,水的反扩散运输,保持聚合物膜充分水化。负极的压力增加导致中低电流密度(ΔEOCV = +0.05156V, pc=30bar)的过电位略高,而欧姆损失减少,允许类似的电解性能为2.0A/cm2。这意味着pemec可以在特定金属氢化物(MH)中直接储氢的最佳条件下以高效率运行。氢气交叉流动高度依赖于压差和流场,随着压力的增加而增加,并在蛇形的角落积聚。即使在最关键的条件下(pc=30bar),最大氢摩尔浓度(2.4936×10−4kmol/m3)仍低于潜在爆炸条件的4% mol限制,从而提供了虚拟安全指示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CFD modelling of cathode conditions and membrane crossover flux in PEM water electrolysis
Proton Exchange Membrane water electrolysis is a high-relevance technology to accomplish the industrial upscale of green hydrogen generation, addressing the urgency of the ecological transition thanks to its well-known principle and high conversion efficiency. In this study a comprehensive three-dimensional, two-phase Proton Exchange Membrane Electrolysis Cell (PEMEC) model is proposed, with the aim to investigate how different operating conditions influence the cell behaviour. Particular attention is posed on cathode pressure and humidification levels. The model was validated against experimental data showing excellent agreement between simulation results and experimental polarization curves for two working temperatures (333.15 K, 353.15 K), confirming that for an applied electric potential of 2.0 V the current density drops approximately 20 % for the lower temperature. Dry cathode conditions do not affect electrolysis efficiency due to the water electro-osmotic drag flux, which remains largely dominant on the water back-diffusion transport, keeping the polymeric membrane fully hydrated. Pressure increase at the negative electrode leads to slightly higher overpotentials for medium-low current densities (ΔEOCV+0.05156V for pc=30bar) while ohmic losses are reduced allowing similar electrolysis performance for i>2.0A/cm2. This means that PEMECs can operate at high efficiencies at optimal conditions for the direct hydrogen storage in specific metal hydrides (MH). Hydrogen cross-flow is highly dependent on the pressure differential and on the flow field, with an increase as the pressure raises and an accumulation in the corner of the serpentine. Even in the most critical condition (pc=30bar) the maximum hydrogen molar concentration (2.4936×104kmol/m3), remains below the 4 %mol limit of potentially explosive conditions, thus providing a virtual safety indication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
13.50%
发文量
1319
审稿时长
41 days
期刊介绍: International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems. Topics include: -New methods of measuring and/or correlating transport-property data -Energy engineering -Environmental applications of heat and/or mass transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信