用于二维晶体管的层状GaPS4介电介质

IF 10.9 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Liqun Niu , Zhiren Chen , Guorui Xiao , Zhaowei Zhang , Yinning Zhou , Yu Zhou , Huamin Li , Shen Lai
{"title":"用于二维晶体管的层状GaPS4介电介质","authors":"Liqun Niu ,&nbsp;Zhiren Chen ,&nbsp;Guorui Xiao ,&nbsp;Zhaowei Zhang ,&nbsp;Yinning Zhou ,&nbsp;Yu Zhou ,&nbsp;Huamin Li ,&nbsp;Shen Lai","doi":"10.1016/j.nantod.2025.102915","DOIUrl":null,"url":null,"abstract":"<div><div>Developing van der Waals (vdW) high-k dielectric layers is a key factor in achieving high-performance two-dimensional (2D) semiconductor field effect transistors (FETs). Here, we experimentally reveal that layered GaPS<sub>4</sub> flakes exhibit a high dielectric constant of up to 35 and a high capacitance density (∼2.95 μF/cm²), along with a bandgap larger than 4.15 eV. Band alignment of MoS<sub>2</sub>/GaPS<sub>4</sub> heterostructure indicates a unipolar-like barrier between MoS<sub>2</sub> and GaPS<sub>4</sub> for electrons of ∼1.92 eV. We employed GaPS<sub>4</sub> as gate dielectric with an equivalent oxide thickness (EOT) of 1 nm in a MoS<sub>2</sub> FET, and the device shows a low gate leakage current of 10<sup>−13</sup> A, a high on/off ratio of ∼3 × 10<sup>8</sup>, and minimal hysteresis (∼20 mV). Theoretical modeling confirms that weak interactions preserve the MoS<sub>2</sub> channel’s inherent electronic properties. Compared to other layered dielectrics, GaPS<sub>4</sub> in MoS<sub>2</sub> FETs demonstrates superior properties in terms of bandgap, dielectric constant, EOT and on/off ratio. These advantages highlight the potential of GaPS<sub>4</sub> for integration into 2D semiconductor FETs.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"66 ","pages":"Article 102915"},"PeriodicalIF":10.9000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Layered GaPS4 dielectric for two-dimensional transistors\",\"authors\":\"Liqun Niu ,&nbsp;Zhiren Chen ,&nbsp;Guorui Xiao ,&nbsp;Zhaowei Zhang ,&nbsp;Yinning Zhou ,&nbsp;Yu Zhou ,&nbsp;Huamin Li ,&nbsp;Shen Lai\",\"doi\":\"10.1016/j.nantod.2025.102915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Developing van der Waals (vdW) high-k dielectric layers is a key factor in achieving high-performance two-dimensional (2D) semiconductor field effect transistors (FETs). Here, we experimentally reveal that layered GaPS<sub>4</sub> flakes exhibit a high dielectric constant of up to 35 and a high capacitance density (∼2.95 μF/cm²), along with a bandgap larger than 4.15 eV. Band alignment of MoS<sub>2</sub>/GaPS<sub>4</sub> heterostructure indicates a unipolar-like barrier between MoS<sub>2</sub> and GaPS<sub>4</sub> for electrons of ∼1.92 eV. We employed GaPS<sub>4</sub> as gate dielectric with an equivalent oxide thickness (EOT) of 1 nm in a MoS<sub>2</sub> FET, and the device shows a low gate leakage current of 10<sup>−13</sup> A, a high on/off ratio of ∼3 × 10<sup>8</sup>, and minimal hysteresis (∼20 mV). Theoretical modeling confirms that weak interactions preserve the MoS<sub>2</sub> channel’s inherent electronic properties. Compared to other layered dielectrics, GaPS<sub>4</sub> in MoS<sub>2</sub> FETs demonstrates superior properties in terms of bandgap, dielectric constant, EOT and on/off ratio. These advantages highlight the potential of GaPS<sub>4</sub> for integration into 2D semiconductor FETs.</div></div>\",\"PeriodicalId\":395,\"journal\":{\"name\":\"Nano Today\",\"volume\":\"66 \",\"pages\":\"Article 102915\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2025-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1748013225002877\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013225002877","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发范德华高k介电层是实现高性能二维(2D)半导体场效应晶体管(fet)的关键因素。在这里,我们通过实验揭示了层状GaPS4薄片具有高达35的高介电常数和高电容密度(~ 2.95 μF/cm²),以及大于4.15 eV的带隙。MoS2/GaPS4异质结构的能带排列表明,MoS2和GaPS4之间的电子为~ 1.92 eV的单极势垒。我们在MoS2 FET中采用等效氧化厚度(EOT)为1 nm的GaPS4作为栅极介电介质,该器件显示出10−13 a的低栅极漏电流,高开/关比为~ 3 × 108,最小迟滞(~ 20 mV)。理论模型证实,弱相互作用保留了MoS2沟道固有的电子特性。与其他层状介质相比,MoS2 fet中的GaPS4在带隙、介电常数、EOT和开/关比方面表现出优越的性能。这些优点突出了GaPS4集成到二维半导体场效应管中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Layered GaPS4 dielectric for two-dimensional transistors
Developing van der Waals (vdW) high-k dielectric layers is a key factor in achieving high-performance two-dimensional (2D) semiconductor field effect transistors (FETs). Here, we experimentally reveal that layered GaPS4 flakes exhibit a high dielectric constant of up to 35 and a high capacitance density (∼2.95 μF/cm²), along with a bandgap larger than 4.15 eV. Band alignment of MoS2/GaPS4 heterostructure indicates a unipolar-like barrier between MoS2 and GaPS4 for electrons of ∼1.92 eV. We employed GaPS4 as gate dielectric with an equivalent oxide thickness (EOT) of 1 nm in a MoS2 FET, and the device shows a low gate leakage current of 10−13 A, a high on/off ratio of ∼3 × 108, and minimal hysteresis (∼20 mV). Theoretical modeling confirms that weak interactions preserve the MoS2 channel’s inherent electronic properties. Compared to other layered dielectrics, GaPS4 in MoS2 FETs demonstrates superior properties in terms of bandgap, dielectric constant, EOT and on/off ratio. These advantages highlight the potential of GaPS4 for integration into 2D semiconductor FETs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Today
Nano Today 工程技术-材料科学:综合
CiteScore
21.50
自引率
3.40%
发文量
305
审稿时长
40 days
期刊介绍: Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信