{"title":"与x2η+1+x2η+1相关的二进制多循环码:汉明距离、对偶性、可逆性和LCD性质","authors":"Sujata Bansal, Pramod Kumar Kewat","doi":"10.1016/j.ffa.2025.102741","DOIUrl":null,"url":null,"abstract":"<div><div>This work explores binary polycyclic codes associated with the polynomial <span><math><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>η</mi><mo>+</mo><mn>1</mn></mrow></msup></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>η</mi></mrow></msup></mrow></msup><mo>+</mo><mn>1</mn></math></span>, which is the <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>η</mi></mrow></msup></math></span>-th power of <span><math><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>x</mi><mo>+</mo><mn>1</mn></math></span> for every integer <span><math><mi>η</mi><mo>≥</mo><mn>1</mn></math></span>. We provide an in-depth structural analysis of these codes and compute the exact Hamming distance of each of these binary polycyclic codes. Furthermore, we determine the parity-check matrices and examine the Euclidean duals and annihilator duals for these polycyclic codes. Our analysis reveals that these codes are reversible and, in certain cases, are Linear Complementary Dual (LCD) codes. This discovery highlights the potential of these codes in practical applications such as communication systems, data storage, consumer electronics, and cryptography. We also propose a conjecture that suggests all such polycyclic codes can be LCD.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"110 ","pages":"Article 102741"},"PeriodicalIF":1.2000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Binary polycyclic codes associated with x2η+1+x2η+1: Hamming distance, duality, reversibility and LCD properties\",\"authors\":\"Sujata Bansal, Pramod Kumar Kewat\",\"doi\":\"10.1016/j.ffa.2025.102741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work explores binary polycyclic codes associated with the polynomial <span><math><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>η</mi><mo>+</mo><mn>1</mn></mrow></msup></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>η</mi></mrow></msup></mrow></msup><mo>+</mo><mn>1</mn></math></span>, which is the <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>η</mi></mrow></msup></math></span>-th power of <span><math><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>x</mi><mo>+</mo><mn>1</mn></math></span> for every integer <span><math><mi>η</mi><mo>≥</mo><mn>1</mn></math></span>. We provide an in-depth structural analysis of these codes and compute the exact Hamming distance of each of these binary polycyclic codes. Furthermore, we determine the parity-check matrices and examine the Euclidean duals and annihilator duals for these polycyclic codes. Our analysis reveals that these codes are reversible and, in certain cases, are Linear Complementary Dual (LCD) codes. This discovery highlights the potential of these codes in practical applications such as communication systems, data storage, consumer electronics, and cryptography. We also propose a conjecture that suggests all such polycyclic codes can be LCD.</div></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":\"110 \",\"pages\":\"Article 102741\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579725001716\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725001716","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Binary polycyclic codes associated with x2η+1+x2η+1: Hamming distance, duality, reversibility and LCD properties
This work explores binary polycyclic codes associated with the polynomial , which is the -th power of for every integer . We provide an in-depth structural analysis of these codes and compute the exact Hamming distance of each of these binary polycyclic codes. Furthermore, we determine the parity-check matrices and examine the Euclidean duals and annihilator duals for these polycyclic codes. Our analysis reveals that these codes are reversible and, in certain cases, are Linear Complementary Dual (LCD) codes. This discovery highlights the potential of these codes in practical applications such as communication systems, data storage, consumer electronics, and cryptography. We also propose a conjecture that suggests all such polycyclic codes can be LCD.
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.