Chetan M. Badgujar , Sai Swaminathan , Alison R. Gerken
{"title":"电子鼻在农业粮食有害生物检测、鉴定和监测中的应用综述","authors":"Chetan M. Badgujar , Sai Swaminathan , Alison R. Gerken","doi":"10.1016/j.jspr.2025.102840","DOIUrl":null,"url":null,"abstract":"<div><div>Biotic pest attacks and infestations are major causes of stored grain losses, leading to significant food and economic losses. Conventional, manual, sampling-based pest recognition methods are labor-intensive, time-consuming, costly, require expertise, and may not even detect hidden infestations. In recent years, the electronic nose (e-nose) approach has emerged as a potential alternative for agricultural grain pest recognition and monitoring. An e-nose mimics human olfactory systems by integrating a sensor array, data acquisition, and analysis for recognizing grain pests by analyzing volatile organic compounds (VOCs) emitted by grain and pests. However, well-documented, curated, and synthesized literature on the use of e-nose technology for grain pest detection is lacking. Therefore, this systematic literature review provides a comprehensive overview of the current state-of-the-art e-nose technology for agricultural grain pest monitoring. The review examines employed sensor technology, targeted pest species type, grain medium, data processing, and pattern recognition techniques. An e-nose is a promising tool that offers a rapid, non-destructive solution for detecting, identifying, and monitoring grain pests, including microscopic and hidden insects, with good accuracy. We identified the factors that influence the e-nose performance, which include pest species, storage duration, temperature, moisture content, and pest density. The major challenges include sensor array optimization or selection, large data processing, poor repeatability, and comparability among measurements. An inexpensive and portable e-nose has the potential to help stakeholders and storage managers make timely and data-driven informed actions or decisions to reduce overall food and economic losses.</div></div>","PeriodicalId":17019,"journal":{"name":"Journal of Stored Products Research","volume":"115 ","pages":"Article 102840"},"PeriodicalIF":2.7000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electronic nose for agricultural grain pest detection, identification, and monitoring: A review\",\"authors\":\"Chetan M. Badgujar , Sai Swaminathan , Alison R. Gerken\",\"doi\":\"10.1016/j.jspr.2025.102840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Biotic pest attacks and infestations are major causes of stored grain losses, leading to significant food and economic losses. Conventional, manual, sampling-based pest recognition methods are labor-intensive, time-consuming, costly, require expertise, and may not even detect hidden infestations. In recent years, the electronic nose (e-nose) approach has emerged as a potential alternative for agricultural grain pest recognition and monitoring. An e-nose mimics human olfactory systems by integrating a sensor array, data acquisition, and analysis for recognizing grain pests by analyzing volatile organic compounds (VOCs) emitted by grain and pests. However, well-documented, curated, and synthesized literature on the use of e-nose technology for grain pest detection is lacking. Therefore, this systematic literature review provides a comprehensive overview of the current state-of-the-art e-nose technology for agricultural grain pest monitoring. The review examines employed sensor technology, targeted pest species type, grain medium, data processing, and pattern recognition techniques. An e-nose is a promising tool that offers a rapid, non-destructive solution for detecting, identifying, and monitoring grain pests, including microscopic and hidden insects, with good accuracy. We identified the factors that influence the e-nose performance, which include pest species, storage duration, temperature, moisture content, and pest density. The major challenges include sensor array optimization or selection, large data processing, poor repeatability, and comparability among measurements. An inexpensive and portable e-nose has the potential to help stakeholders and storage managers make timely and data-driven informed actions or decisions to reduce overall food and economic losses.</div></div>\",\"PeriodicalId\":17019,\"journal\":{\"name\":\"Journal of Stored Products Research\",\"volume\":\"115 \",\"pages\":\"Article 102840\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Stored Products Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022474X25002991\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Stored Products Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022474X25002991","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Electronic nose for agricultural grain pest detection, identification, and monitoring: A review
Biotic pest attacks and infestations are major causes of stored grain losses, leading to significant food and economic losses. Conventional, manual, sampling-based pest recognition methods are labor-intensive, time-consuming, costly, require expertise, and may not even detect hidden infestations. In recent years, the electronic nose (e-nose) approach has emerged as a potential alternative for agricultural grain pest recognition and monitoring. An e-nose mimics human olfactory systems by integrating a sensor array, data acquisition, and analysis for recognizing grain pests by analyzing volatile organic compounds (VOCs) emitted by grain and pests. However, well-documented, curated, and synthesized literature on the use of e-nose technology for grain pest detection is lacking. Therefore, this systematic literature review provides a comprehensive overview of the current state-of-the-art e-nose technology for agricultural grain pest monitoring. The review examines employed sensor technology, targeted pest species type, grain medium, data processing, and pattern recognition techniques. An e-nose is a promising tool that offers a rapid, non-destructive solution for detecting, identifying, and monitoring grain pests, including microscopic and hidden insects, with good accuracy. We identified the factors that influence the e-nose performance, which include pest species, storage duration, temperature, moisture content, and pest density. The major challenges include sensor array optimization or selection, large data processing, poor repeatability, and comparability among measurements. An inexpensive and portable e-nose has the potential to help stakeholders and storage managers make timely and data-driven informed actions or decisions to reduce overall food and economic losses.
期刊介绍:
The Journal of Stored Products Research provides an international medium for the publication of both reviews and original results from laboratory and field studies on the preservation and safety of stored products, notably food stocks, covering storage-related problems from the producer through the supply chain to the consumer. Stored products are characterised by having relatively low moisture content and include raw and semi-processed foods, animal feedstuffs, and a range of other durable items, including materials such as clothing or museum artefacts.