基于优化翅片结构的pcm -空气热交换器的设计优化与性能分析

IF 6.4 2区 工程技术 Q1 MECHANICS
Mohamed Ahmed Said , Jasim M. Mahdi , Marrwa S. Ghanim , Khalil Hajlaoui , Nashmi H. Alrasheedi , Mohammad Ghalambaz , Pouyan Talebidadehsardari , Nidhal Ben Khedher
{"title":"基于优化翅片结构的pcm -空气热交换器的设计优化与性能分析","authors":"Mohamed Ahmed Said ,&nbsp;Jasim M. Mahdi ,&nbsp;Marrwa S. Ghanim ,&nbsp;Khalil Hajlaoui ,&nbsp;Nashmi H. Alrasheedi ,&nbsp;Mohammad Ghalambaz ,&nbsp;Pouyan Talebidadehsardari ,&nbsp;Nidhal Ben Khedher","doi":"10.1016/j.icheatmasstransfer.2025.109764","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the design optimization and performance enhancement of a novel triplex-tube phase change material (PCM)-to-air heat exchanger with optimized longitudinal fin configurations for building heating applications. Comprehensive numerical simulations were conducted to evaluate the influence of fin number, distribution, dimensions, and operating conditions on critical performance metrics. Seven fin configurations were analyzed under various Reynolds numbers (500–2000) and inlet air temperatures (0–10 °C). Results demonstrate that the optimal fin arrangement (10 fins inner pipe, 28 fins outer pipe) achieved 55.3 % reduction in PCM solidification time and 117.3 % increase in heat recovery rates compared to non-finned configurations. Increasing Reynolds number from 500 to 2000 enhanced overall heat recovery by 113 % while reducing solidification times by 45 %, though with a 14.3 % trade-off in peak outlet temperature. Decreasing inlet temperature from 5 °C to 0 °C improved total system heat recovery by 24.7 % and reduced solidification time by about 25 %. The study advances the field by introducing an innovative asymmetric PCM distribution across dual annular spaces with optimal fin arrangements, establishing critical design guidelines for high-performance PCM-based heating systems.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"169 ","pages":"Article 109764"},"PeriodicalIF":6.4000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design optimization and performance analysis of a PCM-to-air heat exchanger with optimized fin configuration for building heating applications\",\"authors\":\"Mohamed Ahmed Said ,&nbsp;Jasim M. Mahdi ,&nbsp;Marrwa S. Ghanim ,&nbsp;Khalil Hajlaoui ,&nbsp;Nashmi H. Alrasheedi ,&nbsp;Mohammad Ghalambaz ,&nbsp;Pouyan Talebidadehsardari ,&nbsp;Nidhal Ben Khedher\",\"doi\":\"10.1016/j.icheatmasstransfer.2025.109764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the design optimization and performance enhancement of a novel triplex-tube phase change material (PCM)-to-air heat exchanger with optimized longitudinal fin configurations for building heating applications. Comprehensive numerical simulations were conducted to evaluate the influence of fin number, distribution, dimensions, and operating conditions on critical performance metrics. Seven fin configurations were analyzed under various Reynolds numbers (500–2000) and inlet air temperatures (0–10 °C). Results demonstrate that the optimal fin arrangement (10 fins inner pipe, 28 fins outer pipe) achieved 55.3 % reduction in PCM solidification time and 117.3 % increase in heat recovery rates compared to non-finned configurations. Increasing Reynolds number from 500 to 2000 enhanced overall heat recovery by 113 % while reducing solidification times by 45 %, though with a 14.3 % trade-off in peak outlet temperature. Decreasing inlet temperature from 5 °C to 0 °C improved total system heat recovery by 24.7 % and reduced solidification time by about 25 %. The study advances the field by introducing an innovative asymmetric PCM distribution across dual annular spaces with optimal fin arrangements, establishing critical design guidelines for high-performance PCM-based heating systems.</div></div>\",\"PeriodicalId\":332,\"journal\":{\"name\":\"International Communications in Heat and Mass Transfer\",\"volume\":\"169 \",\"pages\":\"Article 109764\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Communications in Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S073519332501190X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Communications in Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S073519332501190X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究研究了一种新型的三管相变材料(PCM)-空气换热器的设计优化和性能增强,该换热器具有优化的纵向翅片结构,用于建筑供暖应用。通过全面的数值模拟来评估翅片数量、分布、尺寸和操作条件对关键性能指标的影响。在不同雷诺数(500-2000)和进口空气温度(0-10°C)下,分析了七种翅片结构。结果表明,与非翅片配置相比,最佳翅片配置(管内10片,外管28片)使PCM凝固时间缩短55.3%,热回收率提高117.3%。将雷诺数从500增加到2000,总体热回收率提高了113%,凝固时间缩短了45%,但出口峰值温度降低了14.3%。将进口温度从5°C降低到0°C,使系统总热回收率提高了24.7%,凝固时间缩短了约25%。该研究通过在双环形空间中引入创新的非对称PCM分布和最佳翅片布置,推动了该领域的发展,为高性能PCM加热系统建立了关键的设计准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design optimization and performance analysis of a PCM-to-air heat exchanger with optimized fin configuration for building heating applications
This study investigates the design optimization and performance enhancement of a novel triplex-tube phase change material (PCM)-to-air heat exchanger with optimized longitudinal fin configurations for building heating applications. Comprehensive numerical simulations were conducted to evaluate the influence of fin number, distribution, dimensions, and operating conditions on critical performance metrics. Seven fin configurations were analyzed under various Reynolds numbers (500–2000) and inlet air temperatures (0–10 °C). Results demonstrate that the optimal fin arrangement (10 fins inner pipe, 28 fins outer pipe) achieved 55.3 % reduction in PCM solidification time and 117.3 % increase in heat recovery rates compared to non-finned configurations. Increasing Reynolds number from 500 to 2000 enhanced overall heat recovery by 113 % while reducing solidification times by 45 %, though with a 14.3 % trade-off in peak outlet temperature. Decreasing inlet temperature from 5 °C to 0 °C improved total system heat recovery by 24.7 % and reduced solidification time by about 25 %. The study advances the field by introducing an innovative asymmetric PCM distribution across dual annular spaces with optimal fin arrangements, establishing critical design guidelines for high-performance PCM-based heating systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.00
自引率
10.00%
发文量
648
审稿时长
32 days
期刊介绍: International Communications in Heat and Mass Transfer serves as a world forum for the rapid dissemination of new ideas, new measurement techniques, preliminary findings of ongoing investigations, discussions, and criticisms in the field of heat and mass transfer. Two types of manuscript will be considered for publication: communications (short reports of new work or discussions of work which has already been published) and summaries (abstracts of reports, theses or manuscripts which are too long for publication in full). Together with its companion publication, International Journal of Heat and Mass Transfer, with which it shares the same Board of Editors, this journal is read by research workers and engineers throughout the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信