{"title":"磁场和内部热源作用下管道流动的线性稳定性:一种非达西方法","authors":"Ashok Kumar , Akshay Saini , Ashok Kumar , Anup Singh Negi","doi":"10.1016/j.icheatmasstransfer.2025.109808","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines the stability of convective flow in a vertical pipe with a magnetic field, driven by an internal heat source. To formulate governing equations, the non-Darcy Brinkman Forchheimer extended model has been used and solved numerically by the Chebyshev spectral collocation method (CSCM). Stability analysis is conducted for various fluids (mercury and liquids) corresponding to Prandtl numbers (<span><math><mrow><mi>P</mi><mi>r</mi></mrow></math></span>) of 0.0248 and 7, showing that increasing the magnetic field enhances the stability region, with varying effects on critical wave number (<span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>) and critical Grashof number (<span><math><mrow><mi>G</mi><msub><mrow><mi>r</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span>) depending on <span><math><mrow><mi>P</mi><mi>r</mi></mrow></math></span>. The analysis reveals that the magnetic field increases the velocity profile in the central region, while decreasing it near the boundary, with the velocity profile near the boundary increasing with the Darcy number (<span><math><mrow><mi>D</mi><mi>a</mi></mrow></math></span>). Increasing Hartmann number (<span><math><mrow><mi>H</mi><mi>a</mi></mrow></math></span>) significantly stabilizes the flow by suppressing convective motion through Lorentz forces. For <span><math><mrow><mi>D</mi><mi>a</mi><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> and <span><math><mrow><mi>P</mi><mi>r</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>0248</mn></mrow></math></span>, <span><math><mrow><mi>G</mi><msub><mrow><mi>r</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span> increases from <span><math><mrow><mn>6</mn><mo>.</mo><mn>75</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span> at <span><math><mrow><mi>H</mi><mi>a</mi><mo>=</mo><mn>0</mn></mrow></math></span> to <span><math><mrow><mn>7</mn><mo>.</mo><mn>03</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span> at <span><math><mrow><mi>H</mi><mi>a</mi><mo>=</mo><mn>10</mn></mrow></math></span>, indicating requirement of higher buoyancy to trigger convection. Similarly, for <span><math><mrow><mi>D</mi><mi>a</mi><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span>, <span><math><mrow><mi>G</mi><msub><mrow><mi>r</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span> rises from <span><math><mrow><mn>2</mn><mo>.</mo><mn>15</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span> to <span><math><mrow><mn>2</mn><mo>.</mo><mn>40</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span>. Reducing <span><math><mrow><mi>D</mi><mi>a</mi></mrow></math></span> enhances porous resistance, resulting in weaker secondary vortices and diminished convective transport, with secondary flow intensity dropping by over 60% as <span><math><mrow><mi>D</mi><mi>a</mi></mrow></math></span> decreases from <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> to <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span>. Low-<span><math><mrow><mi>P</mi><mi>r</mi></mrow></math></span> fluids exhibit stronger stabilization under magnetic damping compared to high-<span><math><mrow><mi>P</mi><mi>r</mi></mrow></math></span> fluids. Visualizations of the secondary flow in a circular cross-section, showcasing the disturbance velocities (radial, circumferential, and axial) and temperature for various <span><math><mrow><mi>D</mi><mi>a</mi></mrow></math></span> in both absence and presence of a magnetic field. Additionally, the stream function, streamwise velocity, and temperature are depicted in the meridional cross-section of the pipe at critical parameters, providing a comprehensive understanding of the flow dynamics.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"169 ","pages":"Article 109808"},"PeriodicalIF":6.4000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear stability of pipe flow with magnetic field and internal heat source: A non-Darcian approach\",\"authors\":\"Ashok Kumar , Akshay Saini , Ashok Kumar , Anup Singh Negi\",\"doi\":\"10.1016/j.icheatmasstransfer.2025.109808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study examines the stability of convective flow in a vertical pipe with a magnetic field, driven by an internal heat source. To formulate governing equations, the non-Darcy Brinkman Forchheimer extended model has been used and solved numerically by the Chebyshev spectral collocation method (CSCM). Stability analysis is conducted for various fluids (mercury and liquids) corresponding to Prandtl numbers (<span><math><mrow><mi>P</mi><mi>r</mi></mrow></math></span>) of 0.0248 and 7, showing that increasing the magnetic field enhances the stability region, with varying effects on critical wave number (<span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>) and critical Grashof number (<span><math><mrow><mi>G</mi><msub><mrow><mi>r</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span>) depending on <span><math><mrow><mi>P</mi><mi>r</mi></mrow></math></span>. The analysis reveals that the magnetic field increases the velocity profile in the central region, while decreasing it near the boundary, with the velocity profile near the boundary increasing with the Darcy number (<span><math><mrow><mi>D</mi><mi>a</mi></mrow></math></span>). Increasing Hartmann number (<span><math><mrow><mi>H</mi><mi>a</mi></mrow></math></span>) significantly stabilizes the flow by suppressing convective motion through Lorentz forces. For <span><math><mrow><mi>D</mi><mi>a</mi><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> and <span><math><mrow><mi>P</mi><mi>r</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>0248</mn></mrow></math></span>, <span><math><mrow><mi>G</mi><msub><mrow><mi>r</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span> increases from <span><math><mrow><mn>6</mn><mo>.</mo><mn>75</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span> at <span><math><mrow><mi>H</mi><mi>a</mi><mo>=</mo><mn>0</mn></mrow></math></span> to <span><math><mrow><mn>7</mn><mo>.</mo><mn>03</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span> at <span><math><mrow><mi>H</mi><mi>a</mi><mo>=</mo><mn>10</mn></mrow></math></span>, indicating requirement of higher buoyancy to trigger convection. Similarly, for <span><math><mrow><mi>D</mi><mi>a</mi><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span>, <span><math><mrow><mi>G</mi><msub><mrow><mi>r</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span> rises from <span><math><mrow><mn>2</mn><mo>.</mo><mn>15</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span> to <span><math><mrow><mn>2</mn><mo>.</mo><mn>40</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span>. Reducing <span><math><mrow><mi>D</mi><mi>a</mi></mrow></math></span> enhances porous resistance, resulting in weaker secondary vortices and diminished convective transport, with secondary flow intensity dropping by over 60% as <span><math><mrow><mi>D</mi><mi>a</mi></mrow></math></span> decreases from <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> to <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span>. Low-<span><math><mrow><mi>P</mi><mi>r</mi></mrow></math></span> fluids exhibit stronger stabilization under magnetic damping compared to high-<span><math><mrow><mi>P</mi><mi>r</mi></mrow></math></span> fluids. Visualizations of the secondary flow in a circular cross-section, showcasing the disturbance velocities (radial, circumferential, and axial) and temperature for various <span><math><mrow><mi>D</mi><mi>a</mi></mrow></math></span> in both absence and presence of a magnetic field. Additionally, the stream function, streamwise velocity, and temperature are depicted in the meridional cross-section of the pipe at critical parameters, providing a comprehensive understanding of the flow dynamics.</div></div>\",\"PeriodicalId\":332,\"journal\":{\"name\":\"International Communications in Heat and Mass Transfer\",\"volume\":\"169 \",\"pages\":\"Article 109808\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Communications in Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0735193325012345\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Communications in Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0735193325012345","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Linear stability of pipe flow with magnetic field and internal heat source: A non-Darcian approach
This study examines the stability of convective flow in a vertical pipe with a magnetic field, driven by an internal heat source. To formulate governing equations, the non-Darcy Brinkman Forchheimer extended model has been used and solved numerically by the Chebyshev spectral collocation method (CSCM). Stability analysis is conducted for various fluids (mercury and liquids) corresponding to Prandtl numbers () of 0.0248 and 7, showing that increasing the magnetic field enhances the stability region, with varying effects on critical wave number () and critical Grashof number () depending on . The analysis reveals that the magnetic field increases the velocity profile in the central region, while decreasing it near the boundary, with the velocity profile near the boundary increasing with the Darcy number (). Increasing Hartmann number () significantly stabilizes the flow by suppressing convective motion through Lorentz forces. For and , increases from at to at , indicating requirement of higher buoyancy to trigger convection. Similarly, for , rises from to . Reducing enhances porous resistance, resulting in weaker secondary vortices and diminished convective transport, with secondary flow intensity dropping by over 60% as decreases from to . Low- fluids exhibit stronger stabilization under magnetic damping compared to high- fluids. Visualizations of the secondary flow in a circular cross-section, showcasing the disturbance velocities (radial, circumferential, and axial) and temperature for various in both absence and presence of a magnetic field. Additionally, the stream function, streamwise velocity, and temperature are depicted in the meridional cross-section of the pipe at critical parameters, providing a comprehensive understanding of the flow dynamics.
期刊介绍:
International Communications in Heat and Mass Transfer serves as a world forum for the rapid dissemination of new ideas, new measurement techniques, preliminary findings of ongoing investigations, discussions, and criticisms in the field of heat and mass transfer. Two types of manuscript will be considered for publication: communications (short reports of new work or discussions of work which has already been published) and summaries (abstracts of reports, theses or manuscripts which are too long for publication in full). Together with its companion publication, International Journal of Heat and Mass Transfer, with which it shares the same Board of Editors, this journal is read by research workers and engineers throughout the world.