神经网络和田口设计优化溶剂分数对波德瓦德流动散热的影响

IF 6.4 2区 工程技术 Q1 MECHANICS
V Vinay Kumar , Ram Prakash Sharma
{"title":"神经网络和田口设计优化溶剂分数对波德瓦德流动散热的影响","authors":"V Vinay Kumar ,&nbsp;Ram Prakash Sharma","doi":"10.1016/j.icheatmasstransfer.2025.109845","DOIUrl":null,"url":null,"abstract":"<div><div>The work examines thermo-hydrodynamic features of Boger fluid over a stretchable disk, underlining its significance in heat transfer processes across energy and cooling systems. Bodewadt flow governs the fluid dynamics, ensuring a consistent angular momentum at distant points, regulated by centrifugal forces and radial pressure gradients. This research explores three-dimensional incompressible Bodewadt flow of Boger fluid on a stretchable disk, considering the role of endothermic/exothermic reaction and Arrhenius activation energy. The mathematical framework employs similarity transformations to convert a set of partial differential equations into ordinary differential equations. By employing the Runge-Kutta shooting technique, the study ensures an accurate and computationally efficient numerical solution. In addition, Taguchi-based statistical design enables efficient parameter selection while ensuring robust assessment of heat transfer behavior. Advancing further, artificial neural networks with the Levenberg–Marquardt backpropagation algorithm are employed to improve prediction accuracy. Additionally, the proposed fluid model shows optimal accuracy, confirmed by a mean square error of <span><math><mn>4.6658</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>7</mn></mrow></msup></math></span>. Findings reveal that Brownian motion significantly governs heat transfer, contributing 91.48 %, while the maximum heat transfer rate recorded reaches 0.949473.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"169 ","pages":"Article 109845"},"PeriodicalIF":6.4000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural network and Taguchi design optimization of solvent fraction effects on heat dissipation in Bodewadt flow\",\"authors\":\"V Vinay Kumar ,&nbsp;Ram Prakash Sharma\",\"doi\":\"10.1016/j.icheatmasstransfer.2025.109845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The work examines thermo-hydrodynamic features of Boger fluid over a stretchable disk, underlining its significance in heat transfer processes across energy and cooling systems. Bodewadt flow governs the fluid dynamics, ensuring a consistent angular momentum at distant points, regulated by centrifugal forces and radial pressure gradients. This research explores three-dimensional incompressible Bodewadt flow of Boger fluid on a stretchable disk, considering the role of endothermic/exothermic reaction and Arrhenius activation energy. The mathematical framework employs similarity transformations to convert a set of partial differential equations into ordinary differential equations. By employing the Runge-Kutta shooting technique, the study ensures an accurate and computationally efficient numerical solution. In addition, Taguchi-based statistical design enables efficient parameter selection while ensuring robust assessment of heat transfer behavior. Advancing further, artificial neural networks with the Levenberg–Marquardt backpropagation algorithm are employed to improve prediction accuracy. Additionally, the proposed fluid model shows optimal accuracy, confirmed by a mean square error of <span><math><mn>4.6658</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>7</mn></mrow></msup></math></span>. Findings reveal that Brownian motion significantly governs heat transfer, contributing 91.48 %, while the maximum heat transfer rate recorded reaches 0.949473.</div></div>\",\"PeriodicalId\":332,\"journal\":{\"name\":\"International Communications in Heat and Mass Transfer\",\"volume\":\"169 \",\"pages\":\"Article 109845\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Communications in Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0735193325012710\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Communications in Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0735193325012710","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

这项工作检查了博格流体在可拉伸磁盘上的热流体力学特征,强调了它在跨越能源和冷却系统的传热过程中的重要性。波德瓦特流控制着流体动力学,确保在遥远的点上有一致的角动量,由离心力和径向压力梯度调节。考虑吸热/放热反应和Arrhenius活化能的作用,研究了Boger流体在可拉伸圆盘上的三维不可压缩Bodewadt流动。该数学框架采用相似变换将一组偏微分方程转化为常微分方程。采用龙格-库塔射击技术,保证了数值解的准确性和计算效率。此外,基于田口的统计设计使有效的参数选择,同时确保热传递行为的稳健评估。进一步,采用Levenberg-Marquardt反向传播算法的人工神经网络来提高预测精度。此外,所提出的流体模型具有最佳精度,均方误差为4.6658×10−7。结果表明,布朗运动对传热的影响显著,贡献了91.48%,记录的最大换热率达到0.949473。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural network and Taguchi design optimization of solvent fraction effects on heat dissipation in Bodewadt flow
The work examines thermo-hydrodynamic features of Boger fluid over a stretchable disk, underlining its significance in heat transfer processes across energy and cooling systems. Bodewadt flow governs the fluid dynamics, ensuring a consistent angular momentum at distant points, regulated by centrifugal forces and radial pressure gradients. This research explores three-dimensional incompressible Bodewadt flow of Boger fluid on a stretchable disk, considering the role of endothermic/exothermic reaction and Arrhenius activation energy. The mathematical framework employs similarity transformations to convert a set of partial differential equations into ordinary differential equations. By employing the Runge-Kutta shooting technique, the study ensures an accurate and computationally efficient numerical solution. In addition, Taguchi-based statistical design enables efficient parameter selection while ensuring robust assessment of heat transfer behavior. Advancing further, artificial neural networks with the Levenberg–Marquardt backpropagation algorithm are employed to improve prediction accuracy. Additionally, the proposed fluid model shows optimal accuracy, confirmed by a mean square error of 4.6658×107. Findings reveal that Brownian motion significantly governs heat transfer, contributing 91.48 %, while the maximum heat transfer rate recorded reaches 0.949473.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.00
自引率
10.00%
发文量
648
审稿时长
32 days
期刊介绍: International Communications in Heat and Mass Transfer serves as a world forum for the rapid dissemination of new ideas, new measurement techniques, preliminary findings of ongoing investigations, discussions, and criticisms in the field of heat and mass transfer. Two types of manuscript will be considered for publication: communications (short reports of new work or discussions of work which has already been published) and summaries (abstracts of reports, theses or manuscripts which are too long for publication in full). Together with its companion publication, International Journal of Heat and Mass Transfer, with which it shares the same Board of Editors, this journal is read by research workers and engineers throughout the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信