{"title":"自相似测度上的谱特征值集和伯林维数","authors":"Lu Zheng-Yi","doi":"10.1016/j.matpur.2025.103809","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we study harmonic analysis in self-similar measures. A set <span><math><mi>A</mi></math></span> is called a <em>spectral eigenvalue set</em> of <em>μ</em> if there exists <span><math><mi>Λ</mi><mo>⊂</mo><mi>R</mi></math></span> such that the family <span><math><mo>{</mo><mi>a</mi><mi>Λ</mi><mo>:</mo><mi>a</mi><mo>∈</mo><mi>A</mi><mo>}</mo></math></span> are spectra for <em>μ</em>. Given a Hadamard triple <span><math><mo>(</mo><mi>q</mi><mo>,</mo><mi>D</mi><mo>,</mo><mi>L</mi><mo>)</mo></math></span>, Łaba and Wang <span><span>[33]</span></span> proved that the associated self-similar measure <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>D</mi></mrow></msub></math></span> is spectral. We establish that the set<span><span><span><math><mi>T</mi><mo>=</mo><mo>{</mo><mi>t</mi><mo>∈</mo><mi>Z</mi><mo>:</mo><mo>(</mo><mi>q</mi><mo>,</mo><mi>D</mi><mo>,</mo><mi>t</mi><mi>L</mi><mo>)</mo><mtext> forms a Hadamard triple</mtext><mo>}</mo><mo>⊇</mo><mo>{</mo><mi>p</mi><mo>∈</mo><mi>Z</mi><mo>:</mo><mi>gcd</mi><mo></mo><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo><mo>=</mo><mn>1</mn><mo>}</mo></math></span></span></span> constitutes a spectral eigenvalue set for <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>D</mi></mrow></msub></math></span>. Furthermore, we demonstrate that for any prescribed Beurling dimension <span><math><mi>s</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mi>log</mi><mo></mo><mi>#</mi><mi>D</mi></mrow><mrow><mi>log</mi><mo></mo><mi>q</mi></mrow></mfrac><mo>]</mo></math></span>, the corresponding spectra have the cardinality of the continuum. This result provides a complete answer to the question posed by Kong, Li and Wang <span><span>[30]</span></span>. As an application, we characterize the eigenvalue sets for <em>N</em>-Bernoulli convolutions, proving that <span><math><mi>A</mi></math></span> is an eigenvalue set if and only if <span><math><mi>A</mi><mo>⊆</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>T</mi></mrow></mfrac><mi>T</mi></math></span> for some <span><math><mi>T</mi><mo>∈</mo><mi>T</mi></math></span>.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"205 ","pages":"Article 103809"},"PeriodicalIF":2.3000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The spectral eigenvalue set and Beurling dimension on self-similar measures\",\"authors\":\"Lu Zheng-Yi\",\"doi\":\"10.1016/j.matpur.2025.103809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we study harmonic analysis in self-similar measures. A set <span><math><mi>A</mi></math></span> is called a <em>spectral eigenvalue set</em> of <em>μ</em> if there exists <span><math><mi>Λ</mi><mo>⊂</mo><mi>R</mi></math></span> such that the family <span><math><mo>{</mo><mi>a</mi><mi>Λ</mi><mo>:</mo><mi>a</mi><mo>∈</mo><mi>A</mi><mo>}</mo></math></span> are spectra for <em>μ</em>. Given a Hadamard triple <span><math><mo>(</mo><mi>q</mi><mo>,</mo><mi>D</mi><mo>,</mo><mi>L</mi><mo>)</mo></math></span>, Łaba and Wang <span><span>[33]</span></span> proved that the associated self-similar measure <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>D</mi></mrow></msub></math></span> is spectral. We establish that the set<span><span><span><math><mi>T</mi><mo>=</mo><mo>{</mo><mi>t</mi><mo>∈</mo><mi>Z</mi><mo>:</mo><mo>(</mo><mi>q</mi><mo>,</mo><mi>D</mi><mo>,</mo><mi>t</mi><mi>L</mi><mo>)</mo><mtext> forms a Hadamard triple</mtext><mo>}</mo><mo>⊇</mo><mo>{</mo><mi>p</mi><mo>∈</mo><mi>Z</mi><mo>:</mo><mi>gcd</mi><mo></mo><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo><mo>=</mo><mn>1</mn><mo>}</mo></math></span></span></span> constitutes a spectral eigenvalue set for <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>D</mi></mrow></msub></math></span>. Furthermore, we demonstrate that for any prescribed Beurling dimension <span><math><mi>s</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mi>log</mi><mo></mo><mi>#</mi><mi>D</mi></mrow><mrow><mi>log</mi><mo></mo><mi>q</mi></mrow></mfrac><mo>]</mo></math></span>, the corresponding spectra have the cardinality of the continuum. This result provides a complete answer to the question posed by Kong, Li and Wang <span><span>[30]</span></span>. As an application, we characterize the eigenvalue sets for <em>N</em>-Bernoulli convolutions, proving that <span><math><mi>A</mi></math></span> is an eigenvalue set if and only if <span><math><mi>A</mi><mo>⊆</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>T</mi></mrow></mfrac><mi>T</mi></math></span> for some <span><math><mi>T</mi><mo>∈</mo><mi>T</mi></math></span>.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"205 \",\"pages\":\"Article 103809\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782425001539\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001539","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The spectral eigenvalue set and Beurling dimension on self-similar measures
In this work, we study harmonic analysis in self-similar measures. A set is called a spectral eigenvalue set of μ if there exists such that the family are spectra for μ. Given a Hadamard triple , Łaba and Wang [33] proved that the associated self-similar measure is spectral. We establish that the set constitutes a spectral eigenvalue set for . Furthermore, we demonstrate that for any prescribed Beurling dimension , the corresponding spectra have the cardinality of the continuum. This result provides a complete answer to the question posed by Kong, Li and Wang [30]. As an application, we characterize the eigenvalue sets for N-Bernoulli convolutions, proving that is an eigenvalue set if and only if for some .
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.