利用michael型Nozaki-Hiyama-Kishi (NHK)反应的先进电化学C-C键形成

IF 4.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ACS Omega Pub Date : 2025-10-09 DOI:10.1021/acsomega.5c03231
Sara Torabi, , , Mahdi Jamshidi, , and , Sadegh Khazalpour*, 
{"title":"利用michael型Nozaki-Hiyama-Kishi (NHK)反应的先进电化学C-C键形成","authors":"Sara Torabi,&nbsp;, ,&nbsp;Mahdi Jamshidi,&nbsp;, and ,&nbsp;Sadegh Khazalpour*,&nbsp;","doi":"10.1021/acsomega.5c03231","DOIUrl":null,"url":null,"abstract":"<p >Herein focuses on using organometallic electrochemistry for the electrochemical allylation of dihydroxybenzenes and 4,4′-biphenol, employing a mechanism based on the Nozaki–Hiyama–Kishi (NHK) reaction. The NHK reaction, known for its nickel/chromium cross-coupling process, is applied to synthesize allylic alcohol adducts. A convergent paired-electrochemical mechanism is used, catalyzed by NiCl<sub>2</sub> in Bu<sub>4</sub>NClO<sub>4</sub>/DMF media, and optimized through a multiparameter Design of Experiments (DoE) approach. The study systematically evaluates reaction conditions, considering parameters such as electrode material and current density in an undivided electrochemical cell. DoE allows efficient screening, reducing the number of experiments while optimizing key factors affecting reaction yield. Various electrochemical cells are tested to refine electrode materials and analyze cathodic reaction kinetics. The highest isolated yield (94.0%) is achieved using the NHK reaction with a graphite anode and nickel cathode, highlighting the critical role of electrode selection. Theoretical calculations at the BP86/6–311G level assess the charge influence on the Michael acceptor’s reaction site. This computational framework aids in understanding site-selectivity in Michael-type addition reactions, further refining the mechanistic insights of electrochemical allylation.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 41","pages":"47967–47972"},"PeriodicalIF":4.3000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsomega.5c03231","citationCount":"0","resultStr":"{\"title\":\"Advanced Electrochemical C–C Bond Formation Using a Michael-Type Nozaki–Hiyama–Kishi (NHK) Reaction\",\"authors\":\"Sara Torabi,&nbsp;, ,&nbsp;Mahdi Jamshidi,&nbsp;, and ,&nbsp;Sadegh Khazalpour*,&nbsp;\",\"doi\":\"10.1021/acsomega.5c03231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Herein focuses on using organometallic electrochemistry for the electrochemical allylation of dihydroxybenzenes and 4,4′-biphenol, employing a mechanism based on the Nozaki–Hiyama–Kishi (NHK) reaction. The NHK reaction, known for its nickel/chromium cross-coupling process, is applied to synthesize allylic alcohol adducts. A convergent paired-electrochemical mechanism is used, catalyzed by NiCl<sub>2</sub> in Bu<sub>4</sub>NClO<sub>4</sub>/DMF media, and optimized through a multiparameter Design of Experiments (DoE) approach. The study systematically evaluates reaction conditions, considering parameters such as electrode material and current density in an undivided electrochemical cell. DoE allows efficient screening, reducing the number of experiments while optimizing key factors affecting reaction yield. Various electrochemical cells are tested to refine electrode materials and analyze cathodic reaction kinetics. The highest isolated yield (94.0%) is achieved using the NHK reaction with a graphite anode and nickel cathode, highlighting the critical role of electrode selection. Theoretical calculations at the BP86/6–311G level assess the charge influence on the Michael acceptor’s reaction site. This computational framework aids in understanding site-selectivity in Michael-type addition reactions, further refining the mechanistic insights of electrochemical allylation.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 41\",\"pages\":\"47967–47972\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsomega.5c03231\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.5c03231\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.5c03231","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究了基于Nozaki-Hiyama-Kishi (NHK)反应的有机金属电化学方法对二羟基苯和4,4 ' -双酚的电化学烯丙化反应。NHK反应以其镍/铬交叉偶联工艺而闻名,用于合成烯丙醇加合物。采用NiCl2在Bu4NClO4/DMF介质中催化的聚合配对电化学机制,并通过多参数实验设计(DoE)方法进行优化。该研究系统地评估了反应条件,考虑了电极材料和未分割电化学电池中的电流密度等参数。DoE允许高效筛选,减少实验次数,同时优化影响反应收率的关键因素。对各种电化学电池进行了测试,以改进电极材料并分析阴极反应动力学。使用石墨阳极和镍阴极的NHK反应获得了最高的分离产率(94.0%),突出了电极选择的关键作用。BP86/6-311G水平的理论计算评估了电荷对Michael受体反应位点的影响。这种计算框架有助于理解迈克尔型加成反应中的位点选择性,进一步完善电化学烯丙化的机理见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced Electrochemical C–C Bond Formation Using a Michael-Type Nozaki–Hiyama–Kishi (NHK) Reaction

Herein focuses on using organometallic electrochemistry for the electrochemical allylation of dihydroxybenzenes and 4,4′-biphenol, employing a mechanism based on the Nozaki–Hiyama–Kishi (NHK) reaction. The NHK reaction, known for its nickel/chromium cross-coupling process, is applied to synthesize allylic alcohol adducts. A convergent paired-electrochemical mechanism is used, catalyzed by NiCl2 in Bu4NClO4/DMF media, and optimized through a multiparameter Design of Experiments (DoE) approach. The study systematically evaluates reaction conditions, considering parameters such as electrode material and current density in an undivided electrochemical cell. DoE allows efficient screening, reducing the number of experiments while optimizing key factors affecting reaction yield. Various electrochemical cells are tested to refine electrode materials and analyze cathodic reaction kinetics. The highest isolated yield (94.0%) is achieved using the NHK reaction with a graphite anode and nickel cathode, highlighting the critical role of electrode selection. Theoretical calculations at the BP86/6–311G level assess the charge influence on the Michael acceptor’s reaction site. This computational framework aids in understanding site-selectivity in Michael-type addition reactions, further refining the mechanistic insights of electrochemical allylation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信