综合多组学研究海洋芳香益生菌酵母GXDK6在盐胁迫下的谷胱甘肽代谢调控

IF 4.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ACS Omega Pub Date : 2025-10-11 DOI:10.1021/acsomega.5c07376
Zhenze Li, , , Hao Sun, , , Xinglin Chen, , , Pai Peng, , , Huijie Sun, , , Shipeng Chen, , , Muhammad Kashif, , , Ruilin Xie, , , Qi Liang, , , Yujia Luo, , , Tingmei Li, , , Qian Ou, , , Sheng Huang, , and , Chengjian Jiang*, 
{"title":"综合多组学研究海洋芳香益生菌酵母GXDK6在盐胁迫下的谷胱甘肽代谢调控","authors":"Zhenze Li,&nbsp;, ,&nbsp;Hao Sun,&nbsp;, ,&nbsp;Xinglin Chen,&nbsp;, ,&nbsp;Pai Peng,&nbsp;, ,&nbsp;Huijie Sun,&nbsp;, ,&nbsp;Shipeng Chen,&nbsp;, ,&nbsp;Muhammad Kashif,&nbsp;, ,&nbsp;Ruilin Xie,&nbsp;, ,&nbsp;Qi Liang,&nbsp;, ,&nbsp;Yujia Luo,&nbsp;, ,&nbsp;Tingmei Li,&nbsp;, ,&nbsp;Qian Ou,&nbsp;, ,&nbsp;Sheng Huang,&nbsp;, and ,&nbsp;Chengjian Jiang*,&nbsp;","doi":"10.1021/acsomega.5c07376","DOIUrl":null,"url":null,"abstract":"<p >High-salt environments impose significant oxidative stress on microorganisms by disrupting redox homeostasis, necessitating efficient adaptive mechanisms such as glutathione (GSH) metabolism. <i>Meyerozyma guilliermondii</i> GXDK6, a marine-derived multistress-tolerant probiotic yeast, exhibits robust salt tolerance; however, the molecular basis of its GSH-mediated regulatory networks under salt stress remains unexplored. In this study, a comprehensive multiomics approach, integrating whole-genome sequencing, transcriptomics, and proteomics profiling, along with targeted physiological assays, was employed to investigate GSH metabolic regulation under salt stress. Genome-wide analysis identified 55 genes involved in other amino acid metabolism, with transcriptomic and proteomic profiling revealing salt-induced upregulation of key GSH biosynthetic genes (<i>GSS</i>, <i>cysK</i>_2, and <i>glyA</i>) and downregulation of degradation-related gene <i>ggt</i>_2. Moreover, transcript and protein level analyses demonstrated the activation of the biosynthetic pathway. Intracellular GSH content exhibited a biphasic response, with a 39.75% reduction at 5% NaCl, followed by a 53.01% increase at 10% NaCl. Glutathione S-transferase enzyme activity was significantly increased under salt stress, highlighting its role in cellular detoxification. Furthermore, exogenous application of GSH (10 mg/L) markedly improved halotolerance, resulting in a 52.7-fold increase in colony-forming units under 10% NaCl conditions. These findings highlight the crucial role of GSH in maintaining redox homeostasis and provide valuable insights for engineering microbial resilience in hypersaline environments.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 41","pages":"48965–48975"},"PeriodicalIF":4.3000,"publicationDate":"2025-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsomega.5c07376","citationCount":"0","resultStr":"{\"title\":\"Integrated Multiomics Elucidates Glutathione Metabolic Regulation in a Marine Aromatic Probiotic Yeast Meyerozyma guilliermondii GXDK6 under Salt Stress\",\"authors\":\"Zhenze Li,&nbsp;, ,&nbsp;Hao Sun,&nbsp;, ,&nbsp;Xinglin Chen,&nbsp;, ,&nbsp;Pai Peng,&nbsp;, ,&nbsp;Huijie Sun,&nbsp;, ,&nbsp;Shipeng Chen,&nbsp;, ,&nbsp;Muhammad Kashif,&nbsp;, ,&nbsp;Ruilin Xie,&nbsp;, ,&nbsp;Qi Liang,&nbsp;, ,&nbsp;Yujia Luo,&nbsp;, ,&nbsp;Tingmei Li,&nbsp;, ,&nbsp;Qian Ou,&nbsp;, ,&nbsp;Sheng Huang,&nbsp;, and ,&nbsp;Chengjian Jiang*,&nbsp;\",\"doi\":\"10.1021/acsomega.5c07376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >High-salt environments impose significant oxidative stress on microorganisms by disrupting redox homeostasis, necessitating efficient adaptive mechanisms such as glutathione (GSH) metabolism. <i>Meyerozyma guilliermondii</i> GXDK6, a marine-derived multistress-tolerant probiotic yeast, exhibits robust salt tolerance; however, the molecular basis of its GSH-mediated regulatory networks under salt stress remains unexplored. In this study, a comprehensive multiomics approach, integrating whole-genome sequencing, transcriptomics, and proteomics profiling, along with targeted physiological assays, was employed to investigate GSH metabolic regulation under salt stress. Genome-wide analysis identified 55 genes involved in other amino acid metabolism, with transcriptomic and proteomic profiling revealing salt-induced upregulation of key GSH biosynthetic genes (<i>GSS</i>, <i>cysK</i>_2, and <i>glyA</i>) and downregulation of degradation-related gene <i>ggt</i>_2. Moreover, transcript and protein level analyses demonstrated the activation of the biosynthetic pathway. Intracellular GSH content exhibited a biphasic response, with a 39.75% reduction at 5% NaCl, followed by a 53.01% increase at 10% NaCl. Glutathione S-transferase enzyme activity was significantly increased under salt stress, highlighting its role in cellular detoxification. Furthermore, exogenous application of GSH (10 mg/L) markedly improved halotolerance, resulting in a 52.7-fold increase in colony-forming units under 10% NaCl conditions. These findings highlight the crucial role of GSH in maintaining redox homeostasis and provide valuable insights for engineering microbial resilience in hypersaline environments.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 41\",\"pages\":\"48965–48975\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsomega.5c07376\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.5c07376\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.5c07376","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高盐环境通过破坏氧化还原稳态对微生物施加显著的氧化应激,需要高效的适应机制,如谷胱甘肽(GSH)代谢。海产耐多逆境益生菌酵母菌GXDK6具有较强的耐盐性;然而,盐胁迫下gsh介导的调控网络的分子基础仍未被探索。在本研究中,采用综合多组学方法,整合全基因组测序、转录组学和蛋白质组学分析,以及靶向生理分析,研究盐胁迫下谷胱甘肽的代谢调节。全基因组分析鉴定了55个参与其他氨基酸代谢的基因,转录组学和蛋白质组学分析显示盐诱导了关键GSH生物合成基因(GSS, cysK_2和glyA)的上调和降解相关基因ggt_2的下调。此外,转录物和蛋白水平分析证实了生物合成途径的激活。细胞内谷胱甘肽含量呈双相反应,在5% NaCl处理下降低39.75%,在10% NaCl处理下增加53.01%。盐胁迫下谷胱甘肽s -转移酶活性显著升高,表明其在细胞解毒中的作用。此外,外源施用谷胱甘肽(10 mg/L)显著提高了耐盐性,在10% NaCl条件下,菌落形成单位增加了52.7倍。这些发现强调了谷胱甘肽在维持氧化还原稳态中的关键作用,并为高盐环境下的工程微生物恢复能力提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated Multiomics Elucidates Glutathione Metabolic Regulation in a Marine Aromatic Probiotic Yeast Meyerozyma guilliermondii GXDK6 under Salt Stress

High-salt environments impose significant oxidative stress on microorganisms by disrupting redox homeostasis, necessitating efficient adaptive mechanisms such as glutathione (GSH) metabolism. Meyerozyma guilliermondii GXDK6, a marine-derived multistress-tolerant probiotic yeast, exhibits robust salt tolerance; however, the molecular basis of its GSH-mediated regulatory networks under salt stress remains unexplored. In this study, a comprehensive multiomics approach, integrating whole-genome sequencing, transcriptomics, and proteomics profiling, along with targeted physiological assays, was employed to investigate GSH metabolic regulation under salt stress. Genome-wide analysis identified 55 genes involved in other amino acid metabolism, with transcriptomic and proteomic profiling revealing salt-induced upregulation of key GSH biosynthetic genes (GSS, cysK_2, and glyA) and downregulation of degradation-related gene ggt_2. Moreover, transcript and protein level analyses demonstrated the activation of the biosynthetic pathway. Intracellular GSH content exhibited a biphasic response, with a 39.75% reduction at 5% NaCl, followed by a 53.01% increase at 10% NaCl. Glutathione S-transferase enzyme activity was significantly increased under salt stress, highlighting its role in cellular detoxification. Furthermore, exogenous application of GSH (10 mg/L) markedly improved halotolerance, resulting in a 52.7-fold increase in colony-forming units under 10% NaCl conditions. These findings highlight the crucial role of GSH in maintaining redox homeostasis and provide valuable insights for engineering microbial resilience in hypersaline environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信