调谐纳米粒子刚性:从兆道尔顿树突状点到机械生物学驱动的纳米生物相互作用。

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-10-19 DOI:10.1021/acsnano.5c12912
Yincong Zhu,Jianxiang Huang,Yuji Sun,Zichao He,Weiwei Feng,Huiming Ren,Yongzhao Su,Zhehao Wang,Ying Piao,Youqing Shen,Zhuxian Zhou
{"title":"调谐纳米粒子刚性:从兆道尔顿树突状点到机械生物学驱动的纳米生物相互作用。","authors":"Yincong Zhu,Jianxiang Huang,Yuji Sun,Zichao He,Weiwei Feng,Huiming Ren,Yongzhao Su,Zhehao Wang,Ying Piao,Youqing Shen,Zhuxian Zhou","doi":"10.1021/acsnano.5c12912","DOIUrl":null,"url":null,"abstract":"Nanoparticle rigidity is a critical yet poorly understood regulator of nano-bio interactions, but decoupling rigidity from other properties (size, charge) remains challenging. Here, we synthesize ultrahigh-generation dye-cored polylysine dendritic dots (PDDs) with precisely tunable rigidity (Young's moduli: 0.93-1.90 GPa), enabling a systematic study of rigidity effects in megadalton dendrimers. These PDDs, produced at the gram scale with close size/charge but generation-dependent stiffness, reveal a striking mechanobiological trade-off: Stiffer PDDs exhibit enhanced cellular uptake, transcytosis, and deep penetration in three-dimensional (3D) tumor spheroids, while softer ones show prolonged blood circulation and superior tumor accumulation. This work deciphers rigidity's dual role in nano-bio interactions, presenting PDDs as a versatile model for mechanobiology studies and providing actionable design principles for next-generation drug delivery systems.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"131 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning Nanoparticle Rigidity: From Megadalton Dendritic Dots to Mechanobiology-Driven Nano-Bio Interactions.\",\"authors\":\"Yincong Zhu,Jianxiang Huang,Yuji Sun,Zichao He,Weiwei Feng,Huiming Ren,Yongzhao Su,Zhehao Wang,Ying Piao,Youqing Shen,Zhuxian Zhou\",\"doi\":\"10.1021/acsnano.5c12912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanoparticle rigidity is a critical yet poorly understood regulator of nano-bio interactions, but decoupling rigidity from other properties (size, charge) remains challenging. Here, we synthesize ultrahigh-generation dye-cored polylysine dendritic dots (PDDs) with precisely tunable rigidity (Young's moduli: 0.93-1.90 GPa), enabling a systematic study of rigidity effects in megadalton dendrimers. These PDDs, produced at the gram scale with close size/charge but generation-dependent stiffness, reveal a striking mechanobiological trade-off: Stiffer PDDs exhibit enhanced cellular uptake, transcytosis, and deep penetration in three-dimensional (3D) tumor spheroids, while softer ones show prolonged blood circulation and superior tumor accumulation. This work deciphers rigidity's dual role in nano-bio interactions, presenting PDDs as a versatile model for mechanobiology studies and providing actionable design principles for next-generation drug delivery systems.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"131 1\",\"pages\":\"\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.5c12912\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c12912","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

纳米颗粒的刚性是纳米生物相互作用的关键调控因素,但人们对其了解甚少,但将刚性与其他特性(尺寸、电荷)解耦仍然具有挑战性。在这里,我们合成了具有精确可调刚度(杨氏模量:0.93-1.90 GPa)的超高代染料核聚赖氨酸树突状点(pdd),从而能够系统地研究兆道子树突状分子的刚度效应。这些以克为单位产生的pdd具有接近的大小/电荷,但其硬度依赖于生成,揭示了惊人的机械生物学权衡:较硬的pdd在三维(3D)肿瘤球体中表现出增强的细胞摄取、胞吞作用和深度渗透,而较软的pdd则表现出延长的血液循环和优越的肿瘤积聚。这项工作揭示了刚性在纳米生物相互作用中的双重作用,展示了pdd作为力学生物学研究的通用模型,并为下一代药物输送系统提供了可操作的设计原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tuning Nanoparticle Rigidity: From Megadalton Dendritic Dots to Mechanobiology-Driven Nano-Bio Interactions.
Nanoparticle rigidity is a critical yet poorly understood regulator of nano-bio interactions, but decoupling rigidity from other properties (size, charge) remains challenging. Here, we synthesize ultrahigh-generation dye-cored polylysine dendritic dots (PDDs) with precisely tunable rigidity (Young's moduli: 0.93-1.90 GPa), enabling a systematic study of rigidity effects in megadalton dendrimers. These PDDs, produced at the gram scale with close size/charge but generation-dependent stiffness, reveal a striking mechanobiological trade-off: Stiffer PDDs exhibit enhanced cellular uptake, transcytosis, and deep penetration in three-dimensional (3D) tumor spheroids, while softer ones show prolonged blood circulation and superior tumor accumulation. This work deciphers rigidity's dual role in nano-bio interactions, presenting PDDs as a versatile model for mechanobiology studies and providing actionable design principles for next-generation drug delivery systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信