ph响应支链淀粉纳米颗粒在酸性微环境中按需生产葡萄糖。

IF 5.4 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Vinod Kumar Kannaujiya, Yijie Qiao, Peter R Wich
{"title":"ph响应支链淀粉纳米颗粒在酸性微环境中按需生产葡萄糖。","authors":"Vinod Kumar Kannaujiya, Yijie Qiao, Peter R Wich","doi":"10.1021/acs.biomac.5c01095","DOIUrl":null,"url":null,"abstract":"<p><p>Glucose plays a crucial role in supplying energy to our bodies and fuels various cellular metabolic processes. An inadequate supply of glucose can disrupt these metabolic functions, potentially leading to health complications. To address these issues, we present a novel nanosystem designed to produce glucose in the slightly acidic environment found within the late endosomal/lysosomal compartment of cells. In this study, we employed amylopectin (AMY) polysaccharide as a substrate for the glucoamylase enzyme due to its biocompatible, biodegradable, and nontoxic nature. Through an acetal modification, amylopectin was transformed into an acid-sensitive hydrophobic material, acetalated amylopectin (AcAMY), enabling the formulation of particles and encapsulation of the glucoamylase with a high loading efficiency using a double emulsion method. These formulations showed a pH-dependent particle degradation and a controlled release of glucoamylase, facilitating the enzymatic hydrolysis of amylopectin to generate glucose. Moreover, this nanosystem exhibited efficient glucose production, reaching up to 80% glucose within 48 h under acidic conditions, in contrast to a maximum glucose production of 6% under physiological conditions. These findings demonstrate the particle's stability under the physiological environment of the bloodstream and highlight its ability to selectively produce glucose under acidic conditions. Cell viability results demonstrated that both enzyme-loaded and empty particles exhibit no toxicity, even at high particle concentrations, indicating excellent biocompatibility of this system. Consequently, this system shows great potential for effectively delivering glucose intracellularly to cells or tissues experiencing glucose deficiency.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"pH-Responsive Amylopectin Nanoparticles for On-Demand Glucose Production in Acidic Microenvironments.\",\"authors\":\"Vinod Kumar Kannaujiya, Yijie Qiao, Peter R Wich\",\"doi\":\"10.1021/acs.biomac.5c01095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glucose plays a crucial role in supplying energy to our bodies and fuels various cellular metabolic processes. An inadequate supply of glucose can disrupt these metabolic functions, potentially leading to health complications. To address these issues, we present a novel nanosystem designed to produce glucose in the slightly acidic environment found within the late endosomal/lysosomal compartment of cells. In this study, we employed amylopectin (AMY) polysaccharide as a substrate for the glucoamylase enzyme due to its biocompatible, biodegradable, and nontoxic nature. Through an acetal modification, amylopectin was transformed into an acid-sensitive hydrophobic material, acetalated amylopectin (AcAMY), enabling the formulation of particles and encapsulation of the glucoamylase with a high loading efficiency using a double emulsion method. These formulations showed a pH-dependent particle degradation and a controlled release of glucoamylase, facilitating the enzymatic hydrolysis of amylopectin to generate glucose. Moreover, this nanosystem exhibited efficient glucose production, reaching up to 80% glucose within 48 h under acidic conditions, in contrast to a maximum glucose production of 6% under physiological conditions. These findings demonstrate the particle's stability under the physiological environment of the bloodstream and highlight its ability to selectively produce glucose under acidic conditions. Cell viability results demonstrated that both enzyme-loaded and empty particles exhibit no toxicity, even at high particle concentrations, indicating excellent biocompatibility of this system. Consequently, this system shows great potential for effectively delivering glucose intracellularly to cells or tissues experiencing glucose deficiency.</p>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biomac.5c01095\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.5c01095","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

葡萄糖在为我们的身体提供能量和为各种细胞代谢过程提供燃料方面起着至关重要的作用。葡萄糖供应不足会破坏这些代谢功能,可能导致健康并发症。为了解决这些问题,我们提出了一种新的纳米系统,旨在在细胞内体/溶酶体晚期的微酸性环境中产生葡萄糖。在这项研究中,我们采用支链淀粉(AMY)多糖作为葡萄糖淀粉酶的底物,因为它具有生物相容性、可生物降解性和无毒性。通过缩醛修饰,支链淀粉转化为酸敏感疏水材料乙酰化支链淀粉(AcAMY),实现了双乳液法高负载效率的糖淀粉酶颗粒的配制和包封。这些配方显示出ph依赖的颗粒降解和葡萄糖淀粉酶的控制释放,促进了支链淀粉的酶解生成葡萄糖。此外,该纳米系统表现出高效的葡萄糖生成,在酸性条件下48小时内达到80%的葡萄糖,而生理条件下的最大葡萄糖生成率为6%。这些发现证明了该颗粒在血液生理环境下的稳定性,并强调了其在酸性条件下选择性产生葡萄糖的能力。细胞活力结果表明,即使在高颗粒浓度下,载酶和空颗粒也没有毒性,表明该系统具有良好的生物相容性。因此,该系统显示出巨大的潜力,可以有效地将细胞内的葡萄糖输送到经历葡萄糖缺乏的细胞或组织。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
pH-Responsive Amylopectin Nanoparticles for On-Demand Glucose Production in Acidic Microenvironments.

Glucose plays a crucial role in supplying energy to our bodies and fuels various cellular metabolic processes. An inadequate supply of glucose can disrupt these metabolic functions, potentially leading to health complications. To address these issues, we present a novel nanosystem designed to produce glucose in the slightly acidic environment found within the late endosomal/lysosomal compartment of cells. In this study, we employed amylopectin (AMY) polysaccharide as a substrate for the glucoamylase enzyme due to its biocompatible, biodegradable, and nontoxic nature. Through an acetal modification, amylopectin was transformed into an acid-sensitive hydrophobic material, acetalated amylopectin (AcAMY), enabling the formulation of particles and encapsulation of the glucoamylase with a high loading efficiency using a double emulsion method. These formulations showed a pH-dependent particle degradation and a controlled release of glucoamylase, facilitating the enzymatic hydrolysis of amylopectin to generate glucose. Moreover, this nanosystem exhibited efficient glucose production, reaching up to 80% glucose within 48 h under acidic conditions, in contrast to a maximum glucose production of 6% under physiological conditions. These findings demonstrate the particle's stability under the physiological environment of the bloodstream and highlight its ability to selectively produce glucose under acidic conditions. Cell viability results demonstrated that both enzyme-loaded and empty particles exhibit no toxicity, even at high particle concentrations, indicating excellent biocompatibility of this system. Consequently, this system shows great potential for effectively delivering glucose intracellularly to cells or tissues experiencing glucose deficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomacromolecules
Biomacromolecules 化学-高分子科学
CiteScore
10.60
自引率
4.80%
发文量
417
审稿时长
1.6 months
期刊介绍: Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine. Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信