马尔马拉海有效水下监测声纳性能的季节特征

IF 1.5 4区 管理学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Murat Murat, Ugur Kesen
{"title":"马尔马拉海有效水下监测声纳性能的季节特征","authors":"Murat Murat,&nbsp;Ugur Kesen","doi":"10.1049/rsn2.70085","DOIUrl":null,"url":null,"abstract":"<p>This study analyses sonar performance for underwater object detection in four regions of the Marmara Sea, using oceanographic data from the Turkish Naval Forces and open source datasets. Simulations were conducted with LYBIN acoustic modelling software across four seasons (January, May, July and October), evaluating variable-depth sonar (VDS) and hull-mounted sonar (HMS) systems for coverage and detection performance. Results identified optimal sonar coverage zones, highlighting seasonal impacts on propagation, with temperature and salinity fluctuations directly influencing performance. Seasonal stratification in the Marmara Sea generates surface ducts and shadow zones that strongly constrain HMS performance, while VDS consistently mitigates these effects. Simulations demonstrate that VDS reduces shadowed areas by 25% across all seasons and regions, extending reliable detection ranges compared with HMS. The study provides a foundation for designing efficient underwater surveillance systems in the Marmara Sea, offering insights for optimising operational strategies. Future research should explore diverse marine conditions and sonar configurations to enhance detection capabilities.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.70085","citationCount":"0","resultStr":"{\"title\":\"Seasonal Characterisation of Sonar Performance for Effective Underwater Surveillance in the Marmara Sea\",\"authors\":\"Murat Murat,&nbsp;Ugur Kesen\",\"doi\":\"10.1049/rsn2.70085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study analyses sonar performance for underwater object detection in four regions of the Marmara Sea, using oceanographic data from the Turkish Naval Forces and open source datasets. Simulations were conducted with LYBIN acoustic modelling software across four seasons (January, May, July and October), evaluating variable-depth sonar (VDS) and hull-mounted sonar (HMS) systems for coverage and detection performance. Results identified optimal sonar coverage zones, highlighting seasonal impacts on propagation, with temperature and salinity fluctuations directly influencing performance. Seasonal stratification in the Marmara Sea generates surface ducts and shadow zones that strongly constrain HMS performance, while VDS consistently mitigates these effects. Simulations demonstrate that VDS reduces shadowed areas by 25% across all seasons and regions, extending reliable detection ranges compared with HMS. The study provides a foundation for designing efficient underwater surveillance systems in the Marmara Sea, offering insights for optimising operational strategies. Future research should explore diverse marine conditions and sonar configurations to enhance detection capabilities.</p>\",\"PeriodicalId\":50377,\"journal\":{\"name\":\"Iet Radar Sonar and Navigation\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.70085\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Radar Sonar and Navigation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/rsn2.70085\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/rsn2.70085","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究使用来自土耳其海军部队的海洋学数据和开源数据集,分析了马尔马拉海四个区域的水下目标探测声纳性能。利用LYBIN声学建模软件进行了四个季节(1月、5月、7月和10月)的模拟,评估了变深声纳(VDS)和舰载声纳(HMS)系统的覆盖和探测性能。结果确定了最佳声纳覆盖区域,突出了季节性影响,温度和盐度波动直接影响性能。马尔马拉海的季节性分层产生的海面导管和阴影区强烈地限制了HMS的性能,而VDS则持续地减轻了这些影响。仿真表明,与HMS相比,VDS在所有季节和地区减少了25%的阴影区域,扩展了可靠的检测范围。该研究为在马尔马拉海设计有效的水下监视系统提供了基础,为优化操作策略提供了见解。未来的研究应探索不同的海洋条件和声纳配置,以提高探测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Seasonal Characterisation of Sonar Performance for Effective Underwater Surveillance in the Marmara Sea

Seasonal Characterisation of Sonar Performance for Effective Underwater Surveillance in the Marmara Sea

This study analyses sonar performance for underwater object detection in four regions of the Marmara Sea, using oceanographic data from the Turkish Naval Forces and open source datasets. Simulations were conducted with LYBIN acoustic modelling software across four seasons (January, May, July and October), evaluating variable-depth sonar (VDS) and hull-mounted sonar (HMS) systems for coverage and detection performance. Results identified optimal sonar coverage zones, highlighting seasonal impacts on propagation, with temperature and salinity fluctuations directly influencing performance. Seasonal stratification in the Marmara Sea generates surface ducts and shadow zones that strongly constrain HMS performance, while VDS consistently mitigates these effects. Simulations demonstrate that VDS reduces shadowed areas by 25% across all seasons and regions, extending reliable detection ranges compared with HMS. The study provides a foundation for designing efficient underwater surveillance systems in the Marmara Sea, offering insights for optimising operational strategies. Future research should explore diverse marine conditions and sonar configurations to enhance detection capabilities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iet Radar Sonar and Navigation
Iet Radar Sonar and Navigation 工程技术-电信学
CiteScore
4.10
自引率
11.80%
发文量
137
审稿时长
3.4 months
期刊介绍: IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications. Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信