{"title":"马尔马拉海有效水下监测声纳性能的季节特征","authors":"Murat Murat, Ugur Kesen","doi":"10.1049/rsn2.70085","DOIUrl":null,"url":null,"abstract":"<p>This study analyses sonar performance for underwater object detection in four regions of the Marmara Sea, using oceanographic data from the Turkish Naval Forces and open source datasets. Simulations were conducted with LYBIN acoustic modelling software across four seasons (January, May, July and October), evaluating variable-depth sonar (VDS) and hull-mounted sonar (HMS) systems for coverage and detection performance. Results identified optimal sonar coverage zones, highlighting seasonal impacts on propagation, with temperature and salinity fluctuations directly influencing performance. Seasonal stratification in the Marmara Sea generates surface ducts and shadow zones that strongly constrain HMS performance, while VDS consistently mitigates these effects. Simulations demonstrate that VDS reduces shadowed areas by 25% across all seasons and regions, extending reliable detection ranges compared with HMS. The study provides a foundation for designing efficient underwater surveillance systems in the Marmara Sea, offering insights for optimising operational strategies. Future research should explore diverse marine conditions and sonar configurations to enhance detection capabilities.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.70085","citationCount":"0","resultStr":"{\"title\":\"Seasonal Characterisation of Sonar Performance for Effective Underwater Surveillance in the Marmara Sea\",\"authors\":\"Murat Murat, Ugur Kesen\",\"doi\":\"10.1049/rsn2.70085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study analyses sonar performance for underwater object detection in four regions of the Marmara Sea, using oceanographic data from the Turkish Naval Forces and open source datasets. Simulations were conducted with LYBIN acoustic modelling software across four seasons (January, May, July and October), evaluating variable-depth sonar (VDS) and hull-mounted sonar (HMS) systems for coverage and detection performance. Results identified optimal sonar coverage zones, highlighting seasonal impacts on propagation, with temperature and salinity fluctuations directly influencing performance. Seasonal stratification in the Marmara Sea generates surface ducts and shadow zones that strongly constrain HMS performance, while VDS consistently mitigates these effects. Simulations demonstrate that VDS reduces shadowed areas by 25% across all seasons and regions, extending reliable detection ranges compared with HMS. The study provides a foundation for designing efficient underwater surveillance systems in the Marmara Sea, offering insights for optimising operational strategies. Future research should explore diverse marine conditions and sonar configurations to enhance detection capabilities.</p>\",\"PeriodicalId\":50377,\"journal\":{\"name\":\"Iet Radar Sonar and Navigation\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.70085\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Radar Sonar and Navigation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/rsn2.70085\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/rsn2.70085","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Seasonal Characterisation of Sonar Performance for Effective Underwater Surveillance in the Marmara Sea
This study analyses sonar performance for underwater object detection in four regions of the Marmara Sea, using oceanographic data from the Turkish Naval Forces and open source datasets. Simulations were conducted with LYBIN acoustic modelling software across four seasons (January, May, July and October), evaluating variable-depth sonar (VDS) and hull-mounted sonar (HMS) systems for coverage and detection performance. Results identified optimal sonar coverage zones, highlighting seasonal impacts on propagation, with temperature and salinity fluctuations directly influencing performance. Seasonal stratification in the Marmara Sea generates surface ducts and shadow zones that strongly constrain HMS performance, while VDS consistently mitigates these effects. Simulations demonstrate that VDS reduces shadowed areas by 25% across all seasons and regions, extending reliable detection ranges compared with HMS. The study provides a foundation for designing efficient underwater surveillance systems in the Marmara Sea, offering insights for optimising operational strategies. Future research should explore diverse marine conditions and sonar configurations to enhance detection capabilities.
期刊介绍:
IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications.
Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.