氧空位促进mea捕获的co2加氢制甲醇

IF 3.9 3区 化学 Q2 CHEMISTRY, PHYSICAL
ChemCatChem Pub Date : 2025-08-24 DOI:10.1002/cctc.202500868
Jiong Sun, Changle Wang, Cuizhen Bai, Dr. Muhammad Kamran, Jiahao Zheng, Zhijing Liang, Prof. Dr. Ruiqin Zhang, Prof. Dr. Songdong Yao, Prof. Dr. Shao-Tao Bai
{"title":"氧空位促进mea捕获的co2加氢制甲醇","authors":"Jiong Sun,&nbsp;Changle Wang,&nbsp;Cuizhen Bai,&nbsp;Dr. Muhammad Kamran,&nbsp;Jiahao Zheng,&nbsp;Zhijing Liang,&nbsp;Prof. Dr. Ruiqin Zhang,&nbsp;Prof. Dr. Songdong Yao,&nbsp;Prof. Dr. Shao-Tao Bai","doi":"10.1002/cctc.202500868","DOIUrl":null,"url":null,"abstract":"<p>Integrated CO<sub>2</sub> capture and hydrogenation to methanol is highly likely an economically advantageous technology for flue gas decarbonization and decentralized energy storage. However, highly efficient hydrogenation catalysts are yet to be explored. Herein, we report an efficient metal oxides-carbon-composite supported metal catalyst, Pt/C<sub>SAP</sub>-TiO<sub>2</sub>/CeO<sub>2</sub>, with abundant oxygen vacancies for the highly enhanced hydrogenation of MEA-captured-CO<sub>2</sub> to methanol. An increase in the concentration of oxygen vacancies through catalysts Pt/TiO<sub>2</sub>, Pt/TiO<sub>2</sub>-CeO<sub>2</sub>, and Pt/C<sub>SAP</sub>-TiO<sub>2</sub>/CeO<sub>2</sub> contributes to an improvement in methanol turnovers and yields, as evidenced by x-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM), attenuated total reflectance–Fourier-transform infrared spectroscopy (ATR–FTIR), CO<sub>2</sub>-temperature programmed desorption (CO<sub>2</sub>-TPD), O<span> </span>1s X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and catalysis experiments. The optimized supramolecular catalyst Pt/C<sub>SAP</sub>-TiO<sub>2</sub>/CeO<sub>2</sub> exhibited the best activity, with 193% higher TONs than the parent Pt/TiO<sub>2</sub> catalyst (45.3 versus 23.4). A novel supramolecular heterogeneous catalysis mechanism utilizing the surface oxygen vacancies for absorption, preorganization, activation, and conversion of the key challenging formamide intermediate to methanol is proposed.</p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"17 20","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxygen Vacancies Promoted Hydrogenation of MEA-Captured-CO2 to Methanol\",\"authors\":\"Jiong Sun,&nbsp;Changle Wang,&nbsp;Cuizhen Bai,&nbsp;Dr. Muhammad Kamran,&nbsp;Jiahao Zheng,&nbsp;Zhijing Liang,&nbsp;Prof. Dr. Ruiqin Zhang,&nbsp;Prof. Dr. Songdong Yao,&nbsp;Prof. Dr. Shao-Tao Bai\",\"doi\":\"10.1002/cctc.202500868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Integrated CO<sub>2</sub> capture and hydrogenation to methanol is highly likely an economically advantageous technology for flue gas decarbonization and decentralized energy storage. However, highly efficient hydrogenation catalysts are yet to be explored. Herein, we report an efficient metal oxides-carbon-composite supported metal catalyst, Pt/C<sub>SAP</sub>-TiO<sub>2</sub>/CeO<sub>2</sub>, with abundant oxygen vacancies for the highly enhanced hydrogenation of MEA-captured-CO<sub>2</sub> to methanol. An increase in the concentration of oxygen vacancies through catalysts Pt/TiO<sub>2</sub>, Pt/TiO<sub>2</sub>-CeO<sub>2</sub>, and Pt/C<sub>SAP</sub>-TiO<sub>2</sub>/CeO<sub>2</sub> contributes to an improvement in methanol turnovers and yields, as evidenced by x-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM), attenuated total reflectance–Fourier-transform infrared spectroscopy (ATR–FTIR), CO<sub>2</sub>-temperature programmed desorption (CO<sub>2</sub>-TPD), O<span> </span>1s X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and catalysis experiments. The optimized supramolecular catalyst Pt/C<sub>SAP</sub>-TiO<sub>2</sub>/CeO<sub>2</sub> exhibited the best activity, with 193% higher TONs than the parent Pt/TiO<sub>2</sub> catalyst (45.3 versus 23.4). A novel supramolecular heterogeneous catalysis mechanism utilizing the surface oxygen vacancies for absorption, preorganization, activation, and conversion of the key challenging formamide intermediate to methanol is proposed.</p>\",\"PeriodicalId\":141,\"journal\":{\"name\":\"ChemCatChem\",\"volume\":\"17 20\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemCatChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.202500868\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemCatChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.202500868","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

综合二氧化碳捕获和加氢制甲醇很可能是一种经济上有利的烟气脱碳和分散储能技术。然而,高效的加氢催化剂还有待开发。在此,我们报道了一种高效的金属氧化物-碳复合负载金属催化剂Pt/ ccap - tio2 /CeO2,具有丰富的氧空位,用于mea捕获的二氧化碳加氢成甲醇。通过x射线衍射(XRD)、Brunauer-Emmett-Teller (BET)、扫描电子显微镜(SEM)、衰减全反射-傅里叶变换红外光谱(ATR-FTIR)、co2 -温度程序解吸(CO2-TPD)、O - 1s x射线光电子能谱(XPS)等测试结果表明,Pt/TiO2、Pt/TiO2-CeO2和Pt/ ccap -TiO2/CeO2催化剂增加氧空位浓度有助于提高甲醇的转化率和产率。电子顺磁共振(EPR)和催化实验。优化后的超分子催化剂Pt/ ccap -TiO2/CeO2表现出最好的活性,比母体Pt/TiO2催化剂(45.3吨比23.4吨)提高193%。提出了一种利用表面氧空位进行甲酰胺中间体吸附、预组织、活化和转化为甲醇的新型超分子非均相催化机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Oxygen Vacancies Promoted Hydrogenation of MEA-Captured-CO2 to Methanol

Oxygen Vacancies Promoted Hydrogenation of MEA-Captured-CO2 to Methanol

Integrated CO2 capture and hydrogenation to methanol is highly likely an economically advantageous technology for flue gas decarbonization and decentralized energy storage. However, highly efficient hydrogenation catalysts are yet to be explored. Herein, we report an efficient metal oxides-carbon-composite supported metal catalyst, Pt/CSAP-TiO2/CeO2, with abundant oxygen vacancies for the highly enhanced hydrogenation of MEA-captured-CO2 to methanol. An increase in the concentration of oxygen vacancies through catalysts Pt/TiO2, Pt/TiO2-CeO2, and Pt/CSAP-TiO2/CeO2 contributes to an improvement in methanol turnovers and yields, as evidenced by x-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM), attenuated total reflectance–Fourier-transform infrared spectroscopy (ATR–FTIR), CO2-temperature programmed desorption (CO2-TPD), O 1s X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and catalysis experiments. The optimized supramolecular catalyst Pt/CSAP-TiO2/CeO2 exhibited the best activity, with 193% higher TONs than the parent Pt/TiO2 catalyst (45.3 versus 23.4). A novel supramolecular heterogeneous catalysis mechanism utilizing the surface oxygen vacancies for absorption, preorganization, activation, and conversion of the key challenging formamide intermediate to methanol is proposed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemCatChem
ChemCatChem 化学-物理化学
CiteScore
8.10
自引率
4.40%
发文量
511
审稿时长
1.3 months
期刊介绍: With an impact factor of 4.495 (2018), ChemCatChem is one of the premier journals in the field of catalysis. The journal provides primary research papers and critical secondary information on heterogeneous, homogeneous and bio- and nanocatalysis. The journal is well placed to strengthen cross-communication within between these communities. Its authors and readers come from academia, the chemical industry, and government laboratories across the world. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and is supported by the German Catalysis Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信