横向各向同性介质中初到时间射线路径的有效计算方法

IF 1.8 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Yongming Lu, Ye Zhang, Tao Lei, Nan Hu, Yongjie Tang, Jianming Zhang
{"title":"横向各向同性介质中初到时间射线路径的有效计算方法","authors":"Yongming Lu,&nbsp;Ye Zhang,&nbsp;Tao Lei,&nbsp;Nan Hu,&nbsp;Yongjie Tang,&nbsp;Jianming Zhang","doi":"10.1111/1365-2478.70087","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Raypath tracing is a commonly used technique in geophysics, employed to simulate and analyse seismic wave propagation paths from source to receiver in complex media. In isotropic media, raypaths can be obtained by tracing from the receiver point along directions perpendicular to the wavefront towards the source point, based on the Fermat principle, because in isotropic media, the ray direction aligns with the ray gradient direction. In an anisotropic medium, the ray direction generally differs from the ray gradient direction, rendering the conventional tracing method inaccurate. Solving raypaths using Hamilton's canonical equations is a powerful method. However, in anisotropic media, the complex dependence of wave velocity on the propagation direction complicates the Hamiltonian function, significantly increasing computational complexity. To address this problem, we have derived a scheme based on the relationship between the group velocity vector and the slowness vector in anisotropic media. Firstly, the slowness vector is derived from the traveltime obtained through the eikonal equation, followed by the computation of the group velocity vector. Then, the raypath is determined by tracing back from the receiver point using the group velocity components to the source point. The efficiency and accuracy of our approach are validated through three numerical experiments.</p></div>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":"73 8","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Method for Calculating Raypaths of First-Arrival Traveltimes in Transversely Isotropic Media\",\"authors\":\"Yongming Lu,&nbsp;Ye Zhang,&nbsp;Tao Lei,&nbsp;Nan Hu,&nbsp;Yongjie Tang,&nbsp;Jianming Zhang\",\"doi\":\"10.1111/1365-2478.70087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Raypath tracing is a commonly used technique in geophysics, employed to simulate and analyse seismic wave propagation paths from source to receiver in complex media. In isotropic media, raypaths can be obtained by tracing from the receiver point along directions perpendicular to the wavefront towards the source point, based on the Fermat principle, because in isotropic media, the ray direction aligns with the ray gradient direction. In an anisotropic medium, the ray direction generally differs from the ray gradient direction, rendering the conventional tracing method inaccurate. Solving raypaths using Hamilton's canonical equations is a powerful method. However, in anisotropic media, the complex dependence of wave velocity on the propagation direction complicates the Hamiltonian function, significantly increasing computational complexity. To address this problem, we have derived a scheme based on the relationship between the group velocity vector and the slowness vector in anisotropic media. Firstly, the slowness vector is derived from the traveltime obtained through the eikonal equation, followed by the computation of the group velocity vector. Then, the raypath is determined by tracing back from the receiver point using the group velocity components to the source point. The efficiency and accuracy of our approach are validated through three numerical experiments.</p></div>\",\"PeriodicalId\":12793,\"journal\":{\"name\":\"Geophysical Prospecting\",\"volume\":\"73 8\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Prospecting\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.70087\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Prospecting","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.70087","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

射线路径追踪技术是地球物理学中常用的一种技术,用于模拟和分析地震波在复杂介质中从震源到接收器的传播路径。在各向同性介质中,由于在各向同性介质中,射线方向与射线梯度方向一致,因此根据费马原理,可以从接收点沿垂直于波前的方向向源点跟踪得到射线路径。在各向异性介质中,射线方向通常与射线梯度方向不同,使得传统的追踪方法不准确。利用哈密顿标准方程求解光线路径是一种强大的方法。然而,在各向异性介质中,波速对传播方向的复杂依赖使哈密顿函数变得复杂,大大增加了计算复杂度。为了解决这一问题,我们根据各向异性介质中群速度矢量和慢度矢量之间的关系,推导出一种方案。首先,由eikonal方程得到的行时导出慢度矢量,然后计算群速度矢量。然后,通过使用群速度分量从接收点追踪到源点来确定射线路径。通过三个数值实验验证了该方法的有效性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An Efficient Method for Calculating Raypaths of First-Arrival Traveltimes in Transversely Isotropic Media

An Efficient Method for Calculating Raypaths of First-Arrival Traveltimes in Transversely Isotropic Media

Raypath tracing is a commonly used technique in geophysics, employed to simulate and analyse seismic wave propagation paths from source to receiver in complex media. In isotropic media, raypaths can be obtained by tracing from the receiver point along directions perpendicular to the wavefront towards the source point, based on the Fermat principle, because in isotropic media, the ray direction aligns with the ray gradient direction. In an anisotropic medium, the ray direction generally differs from the ray gradient direction, rendering the conventional tracing method inaccurate. Solving raypaths using Hamilton's canonical equations is a powerful method. However, in anisotropic media, the complex dependence of wave velocity on the propagation direction complicates the Hamiltonian function, significantly increasing computational complexity. To address this problem, we have derived a scheme based on the relationship between the group velocity vector and the slowness vector in anisotropic media. Firstly, the slowness vector is derived from the traveltime obtained through the eikonal equation, followed by the computation of the group velocity vector. Then, the raypath is determined by tracing back from the receiver point using the group velocity components to the source point. The efficiency and accuracy of our approach are validated through three numerical experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Prospecting
Geophysical Prospecting 地学-地球化学与地球物理
CiteScore
4.90
自引率
11.50%
发文量
118
审稿时长
4.5 months
期刊介绍: Geophysical Prospecting publishes the best in primary research on the science of geophysics as it applies to the exploration, evaluation and extraction of earth resources. Drawing heavily on contributions from researchers in the oil and mineral exploration industries, the journal has a very practical slant. Although the journal provides a valuable forum for communication among workers in these fields, it is also ideally suited to researchers in academic geophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信