基于“三合一”工程MOF (Fe)@Fe3S4/CNF平台的对乙酰氨基酚超灵敏大量程电化学传感器

IF 3.7 2区 化学 Q2 CHEMISTRY, APPLIED
Yanhui Feng, Panpan Chen, Rongbin Ye, Xiumei Lin, Hongxu Guo
{"title":"基于“三合一”工程MOF (Fe)@Fe3S4/CNF平台的对乙酰氨基酚超灵敏大量程电化学传感器","authors":"Yanhui Feng,&nbsp;Panpan Chen,&nbsp;Rongbin Ye,&nbsp;Xiumei Lin,&nbsp;Hongxu Guo","doi":"10.1002/aoc.70388","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study presents a novel ternary heterostructured electrochemical sensor (MOF (Fe)@Fe<sub>3</sub>S<sub>4</sub>/CNF) by integrating Fe-MOFs, Fe<sub>3</sub>S<sub>4</sub>, and carbon nanofibers (CNF) for ultrasensitive acetaminophen (APAP) detection. Fe<sub>3</sub>S<sub>4</sub> was anchored in situ on Fe-MOFs via ultrasound-assisted hydrothermal vulcanization, coupled with 3D CNF networks. Characterization (XRD, FT-IR, SEM, XPS, and BET) confirmed Fe<sub>3</sub>S<sub>4</sub> enhances the MOF electronic configuration via interfacial charge redistribution, while CNF prevents aggregation and boosts conductivity. The optimized sensor shows a wide linear range (0.02–350 μM, <i>R</i><sup>2</sup> = 0.9993), ultralow LOD (9.583 nM), &gt; 94% interference resistance (UA, DA), and high recovery (97.33%–104.4%). A triaxial synergy mechanism is proposed: (1) MOF mesopores enable size-selective APAP diffusion, (2) Fe<sup>2+</sup>/Fe<sup>3+</sup> redox pairs drive catalytic activation via Jahn-Teller effects, and (3) CNF ensures efficient charge transfer. This “pore-activity-conductivity” strategy advances MOF-based sensors through structural precision and interfacial nanoscale engineering for next-gen electrochemical platforms.</p>\n </div>","PeriodicalId":8344,"journal":{"name":"Applied Organometallic Chemistry","volume":"39 11","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrasensitive and Wide-Range Electrochemical Sensor for Acetaminophen Based on a “Three-In-One” Engineered MOF (Fe)@Fe3S4/CNF Platform\",\"authors\":\"Yanhui Feng,&nbsp;Panpan Chen,&nbsp;Rongbin Ye,&nbsp;Xiumei Lin,&nbsp;Hongxu Guo\",\"doi\":\"10.1002/aoc.70388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This study presents a novel ternary heterostructured electrochemical sensor (MOF (Fe)@Fe<sub>3</sub>S<sub>4</sub>/CNF) by integrating Fe-MOFs, Fe<sub>3</sub>S<sub>4</sub>, and carbon nanofibers (CNF) for ultrasensitive acetaminophen (APAP) detection. Fe<sub>3</sub>S<sub>4</sub> was anchored in situ on Fe-MOFs via ultrasound-assisted hydrothermal vulcanization, coupled with 3D CNF networks. Characterization (XRD, FT-IR, SEM, XPS, and BET) confirmed Fe<sub>3</sub>S<sub>4</sub> enhances the MOF electronic configuration via interfacial charge redistribution, while CNF prevents aggregation and boosts conductivity. The optimized sensor shows a wide linear range (0.02–350 μM, <i>R</i><sup>2</sup> = 0.9993), ultralow LOD (9.583 nM), &gt; 94% interference resistance (UA, DA), and high recovery (97.33%–104.4%). A triaxial synergy mechanism is proposed: (1) MOF mesopores enable size-selective APAP diffusion, (2) Fe<sup>2+</sup>/Fe<sup>3+</sup> redox pairs drive catalytic activation via Jahn-Teller effects, and (3) CNF ensures efficient charge transfer. This “pore-activity-conductivity” strategy advances MOF-based sensors through structural precision and interfacial nanoscale engineering for next-gen electrochemical platforms.</p>\\n </div>\",\"PeriodicalId\":8344,\"journal\":{\"name\":\"Applied Organometallic Chemistry\",\"volume\":\"39 11\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Organometallic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aoc.70388\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Organometallic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aoc.70388","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种新型的三元异质结构电化学传感器(MOF (Fe)@Fe3S4/CNF),该传感器集成了Fe-MOF、Fe3S4和碳纳米纤维(CNF),用于超灵敏对乙酰氨基酚(APAP)的检测。通过超声辅助水热硫化,结合三维CNF网络,将Fe3S4原位锚定在fe - mof上。表征(XRD, FT-IR, SEM, XPS和BET)证实Fe3S4通过界面电荷重新分配增强了MOF的电子构型,而CNF则阻止了聚集并提高了导电性。优化后的传感器具有宽线性范围(0.02 ~ 350 μM, R2 = 0.9993)、超低LOD (9.583 nM)、94%抗干扰性(UA、DA)和高回收率(97.33% ~ 104.4%)等特点。提出了一个三轴协同机制:(1)MOF介孔实现了APAP的尺寸选择性扩散,(2)Fe2+/Fe3+氧化还原对通过Jahn-Teller效应驱动催化活化,(3)CNF保证了高效的电荷转移。这种“孔隙活性-电导率”策略通过结构精度和界面纳米级工程为下一代电化学平台推进了基于mof的传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ultrasensitive and Wide-Range Electrochemical Sensor for Acetaminophen Based on a “Three-In-One” Engineered MOF (Fe)@Fe3S4/CNF Platform

Ultrasensitive and Wide-Range Electrochemical Sensor for Acetaminophen Based on a “Three-In-One” Engineered MOF (Fe)@Fe3S4/CNF Platform

This study presents a novel ternary heterostructured electrochemical sensor (MOF (Fe)@Fe3S4/CNF) by integrating Fe-MOFs, Fe3S4, and carbon nanofibers (CNF) for ultrasensitive acetaminophen (APAP) detection. Fe3S4 was anchored in situ on Fe-MOFs via ultrasound-assisted hydrothermal vulcanization, coupled with 3D CNF networks. Characterization (XRD, FT-IR, SEM, XPS, and BET) confirmed Fe3S4 enhances the MOF electronic configuration via interfacial charge redistribution, while CNF prevents aggregation and boosts conductivity. The optimized sensor shows a wide linear range (0.02–350 μM, R2 = 0.9993), ultralow LOD (9.583 nM), > 94% interference resistance (UA, DA), and high recovery (97.33%–104.4%). A triaxial synergy mechanism is proposed: (1) MOF mesopores enable size-selective APAP diffusion, (2) Fe2+/Fe3+ redox pairs drive catalytic activation via Jahn-Teller effects, and (3) CNF ensures efficient charge transfer. This “pore-activity-conductivity” strategy advances MOF-based sensors through structural precision and interfacial nanoscale engineering for next-gen electrochemical platforms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Organometallic Chemistry
Applied Organometallic Chemistry 化学-无机化学与核化学
CiteScore
7.80
自引率
10.30%
发文量
408
审稿时长
2.2 months
期刊介绍: All new compounds should be satisfactorily identified and proof of their structure given according to generally accepted standards. Structural reports, such as papers exclusively dealing with synthesis and characterization, analytical techniques, or X-ray diffraction studies of metal-organic or organometallic compounds will not be considered. The editors reserve the right to refuse without peer review any manuscript that does not comply with the aims and scope of the journal. Applied Organometallic Chemistry publishes Full Papers, Reviews, Mini Reviews and Communications of scientific research in all areas of organometallic and metal-organic chemistry involving main group metals, transition metals, lanthanides and actinides. All contributions should contain an explicit application of novel compounds, for instance in materials science, nano science, catalysis, chemical vapour deposition, metal-mediated organic synthesis, polymers, bio-organometallics, metallo-therapy, metallo-diagnostics and medicine. Reviews of books covering aspects of the fields of focus are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信