Chih-Ting Hsu, Wenbin Wang, Liying Qian, Ercha Aa, Joseph M. Mclnerney, Shun-Rong Zhang, Yongliang Zhang, Anastasia Newheart, Dong Lin
{"title":"全大气模拟和卫星观测的热层组成的长期趋势","authors":"Chih-Ting Hsu, Wenbin Wang, Liying Qian, Ercha Aa, Joseph M. Mclnerney, Shun-Rong Zhang, Yongliang Zhang, Anastasia Newheart, Dong Lin","doi":"10.1029/2025JA034285","DOIUrl":null,"url":null,"abstract":"<p>This study examines the long-term trend of column-integrated atomic oxygen to molecular nitrogen ratio, <span></span><math>\n <semantics>\n <mrow>\n <mi>Σ</mi>\n <mi>O</mi>\n <mo>/</mo>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\Sigma }O/{N}_{2}$</annotation>\n </semantics></math>, in the upper atmosphere and investigates the cause of this long-term trend in <span></span><math>\n <semantics>\n <mrow>\n <mi>Σ</mi>\n <mi>O</mi>\n <mo>/</mo>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\Sigma }O/{N}_{2}$</annotation>\n </semantics></math>. We first validate the feasibility of using a physics-based model for a long-term climate reanalysis by applying a model-data comparison between 2002 and 2018. <span></span><math>\n <semantics>\n <mrow>\n <mi>Σ</mi>\n <mi>O</mi>\n <mo>/</mo>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\Sigma }O/{N}_{2}$</annotation>\n </semantics></math> simulated by NSF NCAR's Whole Atmosphere Community Climate Model (WACCM) with thermosphere and ionosphere extension (WACCM-X) and measured by Global Ultraviolet Imager (GUVI) aboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) mission is used to determine the long-term trend of <span></span><math>\n <semantics>\n <mrow>\n <mi>Σ</mi>\n <mi>O</mi>\n <mo>/</mo>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\Sigma }O/{N}_{2}$</annotation>\n </semantics></math> from 2002 to 2018 and validate the model result. The model and data show good agreement after removing the impact of solar irradiance and geomagnetic activity using a least-squares fitting method, revealing a decreasing trend of <span></span><math>\n <semantics>\n <mrow>\n <mi>Σ</mi>\n <mi>O</mi>\n <mo>/</mo>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\Sigma }O/{N}_{2}$</annotation>\n </semantics></math> of about <span></span><math>\n <semantics>\n <mrow>\n <mo>−</mo>\n <mn>0.54</mn>\n <mi>%</mi>\n </mrow>\n <annotation> ${-}0.54\\%$</annotation>\n </semantics></math> per decade relative to the <span></span><math>\n <semantics>\n <mrow>\n <mi>Σ</mi>\n <mi>O</mi>\n <mo>/</mo>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\Sigma }O/{N}_{2}$</annotation>\n </semantics></math> in 2018 in the model and about <span></span><math>\n <semantics>\n <mrow>\n <mo>−</mo>\n <mn>0.45</mn>\n <mi>%</mi>\n </mrow>\n <annotation> ${-}0.45\\%$</annotation>\n </semantics></math> per decade in data along the satellite orbit during the period between 2002 and 2018. A decreasing trend of global <span></span><math>\n <semantics>\n <mrow>\n <mi>Σ</mi>\n <mi>O</mi>\n <mo>/</mo>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\Sigma }O/{N}_{2}$</annotation>\n </semantics></math> of about <span></span><math>\n <semantics>\n <mrow>\n <mo>−</mo>\n <mn>0.70</mn>\n <mi>%</mi>\n </mrow>\n <annotation> ${-}0.70\\%$</annotation>\n </semantics></math> per decade is found in the model between 1960 and 2018. After that, four WACCM-X long-term simulations are performed from 1960 to 2018 to identify the cause of the decreasing trend of <span></span><math>\n <semantics>\n <mrow>\n <mi>Σ</mi>\n <mi>O</mi>\n <mo>/</mo>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\Sigma }O/{N}_{2}$</annotation>\n </semantics></math>. The results show that this decreasing trend is mainly caused by the increase in greenhouse gas concentrations.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 10","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Long-Term Trend of Thermospheric Compositions From Whole Atmospheric Simulation and Satellite Observation\",\"authors\":\"Chih-Ting Hsu, Wenbin Wang, Liying Qian, Ercha Aa, Joseph M. Mclnerney, Shun-Rong Zhang, Yongliang Zhang, Anastasia Newheart, Dong Lin\",\"doi\":\"10.1029/2025JA034285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study examines the long-term trend of column-integrated atomic oxygen to molecular nitrogen ratio, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Σ</mi>\\n <mi>O</mi>\\n <mo>/</mo>\\n <msub>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\Sigma }O/{N}_{2}$</annotation>\\n </semantics></math>, in the upper atmosphere and investigates the cause of this long-term trend in <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Σ</mi>\\n <mi>O</mi>\\n <mo>/</mo>\\n <msub>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\Sigma }O/{N}_{2}$</annotation>\\n </semantics></math>. We first validate the feasibility of using a physics-based model for a long-term climate reanalysis by applying a model-data comparison between 2002 and 2018. <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Σ</mi>\\n <mi>O</mi>\\n <mo>/</mo>\\n <msub>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\Sigma }O/{N}_{2}$</annotation>\\n </semantics></math> simulated by NSF NCAR's Whole Atmosphere Community Climate Model (WACCM) with thermosphere and ionosphere extension (WACCM-X) and measured by Global Ultraviolet Imager (GUVI) aboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) mission is used to determine the long-term trend of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Σ</mi>\\n <mi>O</mi>\\n <mo>/</mo>\\n <msub>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\Sigma }O/{N}_{2}$</annotation>\\n </semantics></math> from 2002 to 2018 and validate the model result. The model and data show good agreement after removing the impact of solar irradiance and geomagnetic activity using a least-squares fitting method, revealing a decreasing trend of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Σ</mi>\\n <mi>O</mi>\\n <mo>/</mo>\\n <msub>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\Sigma }O/{N}_{2}$</annotation>\\n </semantics></math> of about <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>−</mo>\\n <mn>0.54</mn>\\n <mi>%</mi>\\n </mrow>\\n <annotation> ${-}0.54\\\\%$</annotation>\\n </semantics></math> per decade relative to the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Σ</mi>\\n <mi>O</mi>\\n <mo>/</mo>\\n <msub>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\Sigma }O/{N}_{2}$</annotation>\\n </semantics></math> in 2018 in the model and about <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>−</mo>\\n <mn>0.45</mn>\\n <mi>%</mi>\\n </mrow>\\n <annotation> ${-}0.45\\\\%$</annotation>\\n </semantics></math> per decade in data along the satellite orbit during the period between 2002 and 2018. A decreasing trend of global <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Σ</mi>\\n <mi>O</mi>\\n <mo>/</mo>\\n <msub>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\Sigma }O/{N}_{2}$</annotation>\\n </semantics></math> of about <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>−</mo>\\n <mn>0.70</mn>\\n <mi>%</mi>\\n </mrow>\\n <annotation> ${-}0.70\\\\%$</annotation>\\n </semantics></math> per decade is found in the model between 1960 and 2018. After that, four WACCM-X long-term simulations are performed from 1960 to 2018 to identify the cause of the decreasing trend of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Σ</mi>\\n <mi>O</mi>\\n <mo>/</mo>\\n <msub>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\Sigma }O/{N}_{2}$</annotation>\\n </semantics></math>. The results show that this decreasing trend is mainly caused by the increase in greenhouse gas concentrations.</p>\",\"PeriodicalId\":15894,\"journal\":{\"name\":\"Journal of Geophysical Research: Space Physics\",\"volume\":\"130 10\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Space Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025JA034285\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025JA034285","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
本研究考察了柱积分原子氧/分子氮比的长期趋势,Σ O/ N 2 ${\Sigma}O/{N}_{2}$,并在Σ O/ n2 ${\Sigma}O/{N}_{2}$中研究这种长期趋势的原因。我们首先通过对2002年至2018年的模型数据进行比较,验证了使用基于物理的模型进行长期气候再分析的可行性。Σ O/ N 2 ${\Sigma}O/{N}_{2}$由美国国家科学基金会NCAR的全大气群落气候模式(WACCM)与热层和电离层扩展(WACCM- x)模拟,并由全球紫外成像仪(GUVI)在热层电离层和中层能量动力学(TIMED)任务上测量Σ O/ N 2 ${\Sigma}O/{N}_{2}$从2002年到2018年验证模型结果。利用最小二乘拟合方法去除太阳辐照度和地磁活动的影响后,模型与数据吻合较好。与Σ相比,Σ O/ N 2 ${\Sigma}O/{N}_{2}$每10年下降约- 0.54% ${-}0.54\%$模型中2018年的O/ N 2 ${\Sigma}O/{N}_{2}$, 2002年至2018年期间沿卫星轨道的数据每十年约为- 0.45% ${-}0.45\%$。1960 ~ 2018年,全球Σ O/ N 2 ${\Sigma}O/{N}_{2}$的下降趋势约为- 0.70% ${-}0.70\%$ / 10年。随后,对1960 ~ 2018年的4次WACCM-X长期模拟进行了分析,确定了Σ O/ N 2 ${\Sigma}O/{N}_{2}$下降趋势的原因。结果表明,这种下降趋势主要是由温室气体浓度的增加引起的。
The Long-Term Trend of Thermospheric Compositions From Whole Atmospheric Simulation and Satellite Observation
This study examines the long-term trend of column-integrated atomic oxygen to molecular nitrogen ratio, , in the upper atmosphere and investigates the cause of this long-term trend in . We first validate the feasibility of using a physics-based model for a long-term climate reanalysis by applying a model-data comparison between 2002 and 2018. simulated by NSF NCAR's Whole Atmosphere Community Climate Model (WACCM) with thermosphere and ionosphere extension (WACCM-X) and measured by Global Ultraviolet Imager (GUVI) aboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) mission is used to determine the long-term trend of from 2002 to 2018 and validate the model result. The model and data show good agreement after removing the impact of solar irradiance and geomagnetic activity using a least-squares fitting method, revealing a decreasing trend of of about per decade relative to the in 2018 in the model and about per decade in data along the satellite orbit during the period between 2002 and 2018. A decreasing trend of global of about per decade is found in the model between 1960 and 2018. After that, four WACCM-X long-term simulations are performed from 1960 to 2018 to identify the cause of the decreasing trend of . The results show that this decreasing trend is mainly caused by the increase in greenhouse gas concentrations.