基于水热策略的分层WO3纳米结构:下一代超级电容器的光学带隙调谐和高速率电化学响应

IF 2.9 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
K. Sphoorthi, A. P. Nagendra Babu, C. G. Renuka
{"title":"基于水热策略的分层WO3纳米结构:下一代超级电容器的光学带隙调谐和高速率电化学响应","authors":"K. Sphoorthi,&nbsp;A. P. Nagendra Babu,&nbsp;C. G. Renuka","doi":"10.1140/epjp/s13360-025-06963-0","DOIUrl":null,"url":null,"abstract":"<div><p>Hexagonal tungsten trioxide (h-WO<sub>3</sub>) is a noteworthy electrode material because of its tunnel-like lattice, multivalent tungsten states, and defect-mediated redox chemistry. This paper identifies hydrothermal duration as a significant factor in determining phase purity, oxygen vacancy density, and crystallite coherence, which directly influences electrochemical performance. By varying the synthesis time systematically (12–72 h), we discover a transition from disordered nanosheets (W12) to hierarchically organized nanosheet nanorod frameworks (W72), the latter of which displays optimal W<sup>6+</sup>/W<sup>5+</sup> ratios, effective defect management, and improved electron–phonon coupling (16.6 eV). These enhancements from atomic to mesoscale are reflected in the performance metrics: the W72 electrode delivers 473.45 F g<sup>−1</sup> at 1 A g<sup>−1</sup>, retaining 160.34 F g<sup>−1</sup> at 3 A g<sup>−1</sup>, with minimal charge-transfer resistance (R<sub>ct</sub> = 4.99 Ω) and low series resistance (R<sub>s</sub> = 0.319 Ω). The asymmetric configuration (W72//AC) achieves an energy density of 15.3 Wh k g<sup>−1</sup> and a power density of 2461.5 W k g<sup>−1</sup>, sustaining 82.3% capacitance retention after 1000 cycles and a quick relaxation time (τ = 0.602 s). This work demonstrates that hydrothermal time-engineering is a robust method for optimizing defects and crystallinity, positioning h-WO<sub>3</sub> as a scalable platform for high-rate, environmentally sustainable supercapacitors and hybrid energy storage systems.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"140 10","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical WO3 nanostructures via hydrothermal strategy: optical bandgap tuning and high-rate electrochemical response for next-generation supercapacitors\",\"authors\":\"K. Sphoorthi,&nbsp;A. P. Nagendra Babu,&nbsp;C. G. Renuka\",\"doi\":\"10.1140/epjp/s13360-025-06963-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hexagonal tungsten trioxide (h-WO<sub>3</sub>) is a noteworthy electrode material because of its tunnel-like lattice, multivalent tungsten states, and defect-mediated redox chemistry. This paper identifies hydrothermal duration as a significant factor in determining phase purity, oxygen vacancy density, and crystallite coherence, which directly influences electrochemical performance. By varying the synthesis time systematically (12–72 h), we discover a transition from disordered nanosheets (W12) to hierarchically organized nanosheet nanorod frameworks (W72), the latter of which displays optimal W<sup>6+</sup>/W<sup>5+</sup> ratios, effective defect management, and improved electron–phonon coupling (16.6 eV). These enhancements from atomic to mesoscale are reflected in the performance metrics: the W72 electrode delivers 473.45 F g<sup>−1</sup> at 1 A g<sup>−1</sup>, retaining 160.34 F g<sup>−1</sup> at 3 A g<sup>−1</sup>, with minimal charge-transfer resistance (R<sub>ct</sub> = 4.99 Ω) and low series resistance (R<sub>s</sub> = 0.319 Ω). The asymmetric configuration (W72//AC) achieves an energy density of 15.3 Wh k g<sup>−1</sup> and a power density of 2461.5 W k g<sup>−1</sup>, sustaining 82.3% capacitance retention after 1000 cycles and a quick relaxation time (τ = 0.602 s). This work demonstrates that hydrothermal time-engineering is a robust method for optimizing defects and crystallinity, positioning h-WO<sub>3</sub> as a scalable platform for high-rate, environmentally sustainable supercapacitors and hybrid energy storage systems.</p></div>\",\"PeriodicalId\":792,\"journal\":{\"name\":\"The European Physical Journal Plus\",\"volume\":\"140 10\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal Plus\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjp/s13360-025-06963-0\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-025-06963-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

六方三氧化钨(h-WO3)由于其隧道状晶格、多价钨态和缺陷介导的氧化还原化学特性而成为一种值得关注的电极材料。本文认为水热时间是决定相纯度、氧空位密度和晶体相干性的重要因素,直接影响电化学性能。通过系统地改变合成时间(12-72小时),我们发现了从无序纳米片(W12)到分层组织纳米片纳米棒框架(W72)的转变,后者具有最佳的W6+/W5+比率,有效的缺陷管理和改进的电子-声子耦合(16.6 eV)。这些从原子尺度到中尺度的增强反映在性能指标上:W72电极在1 A g−1时提供473.45 F g−1,在3 A g−1时保持160.34 F g−1,具有最小的电荷转移电阻(Rct = 4.99 Ω)和低串联电阻(Rs = 0.319 Ω)。非对称结构(W72//AC)实现了15.3 Wh k g−1的能量密度和2461.5 W k g−1的功率密度,在1000次循环后保持82.3%的电容保持率和快速的弛豫时间(τ = 0.602 s)。这项工作表明,水热时间工程是一种优化缺陷和结晶度的强大方法,将h-WO3定位为高速、环境可持续的超级电容器和混合储能系统的可扩展平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical WO3 nanostructures via hydrothermal strategy: optical bandgap tuning and high-rate electrochemical response for next-generation supercapacitors

Hexagonal tungsten trioxide (h-WO3) is a noteworthy electrode material because of its tunnel-like lattice, multivalent tungsten states, and defect-mediated redox chemistry. This paper identifies hydrothermal duration as a significant factor in determining phase purity, oxygen vacancy density, and crystallite coherence, which directly influences electrochemical performance. By varying the synthesis time systematically (12–72 h), we discover a transition from disordered nanosheets (W12) to hierarchically organized nanosheet nanorod frameworks (W72), the latter of which displays optimal W6+/W5+ ratios, effective defect management, and improved electron–phonon coupling (16.6 eV). These enhancements from atomic to mesoscale are reflected in the performance metrics: the W72 electrode delivers 473.45 F g−1 at 1 A g−1, retaining 160.34 F g−1 at 3 A g−1, with minimal charge-transfer resistance (Rct = 4.99 Ω) and low series resistance (Rs = 0.319 Ω). The asymmetric configuration (W72//AC) achieves an energy density of 15.3 Wh k g−1 and a power density of 2461.5 W k g−1, sustaining 82.3% capacitance retention after 1000 cycles and a quick relaxation time (τ = 0.602 s). This work demonstrates that hydrothermal time-engineering is a robust method for optimizing defects and crystallinity, positioning h-WO3 as a scalable platform for high-rate, environmentally sustainable supercapacitors and hybrid energy storage systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal Plus
The European Physical Journal Plus PHYSICS, MULTIDISCIPLINARY-
CiteScore
5.40
自引率
8.80%
发文量
1150
审稿时长
4-8 weeks
期刊介绍: The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences. The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信