Afrah Turki Awad, Mustafa Naozad Taifor, Abdulelah Hameed Yaseen, Uday M. Nayef, Tareq H. Abeda, Mohammed W. Muayad, Dongsheng Wen
{"title":"一步法制备cuo纳米盐增强储能","authors":"Afrah Turki Awad, Mustafa Naozad Taifor, Abdulelah Hameed Yaseen, Uday M. Nayef, Tareq H. Abeda, Mohammed W. Muayad, Dongsheng Wen","doi":"10.1140/epjp/s13360-025-06924-7","DOIUrl":null,"url":null,"abstract":"<div><p>Molten salts are widely used as thermal energy storage materials in solar thermal systems; however, their limited thermophysical properties, particularly low specific heat capacity, restrict their performance. This study uses a novel one-step method to prepare nanoparticles directly in the base salt under different preparation conditions. We have extended the examination of various preparation conditions from our previous study. The precursor material was copper sulfate uses to produce copper oxide (CuO) nanoparticles. The concentrations of the prepared CuO nanoparticles keeps fixed at 1 wt.%. The preparation processes of CuO nanoparticles were at different times and temperatures. The results reveal a significant influence of the preparation method conditions on the enhancement of thermophysical properties of nanosalt. The one-step method achieved the highest increase in specific heat capacity, with improvements of 32.63% in the solid phase and 21.74% in the liquid phase compared to the base salt without any additives. Additionally, sensible heat storage improved by 8.623% using the one-step nanosalt formulation. More notably, latent heat showed a remarkable increase of 76.46% for the one-step CuO-nanosalt compared to the pure binary salt. Furthermore, the one-step method is a cost-effective way to save on the cost and time of preparations by 89.27%. These findings underscore the crucial role of the preparation technique in determining the thermal behavior of nanosalts. Transmission electron microscopy (TEM) analysis confirmed the presence of CuO nanoparticle agglomeration in samples prepared via the one-step method, which may contribute to the observed enhancements. This work provides new insights into optimizing nanosalt formulations for more efficient thermal energy storage systems.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"140 10","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced energy storage via one-step preparation of Cuo-nanosalt\",\"authors\":\"Afrah Turki Awad, Mustafa Naozad Taifor, Abdulelah Hameed Yaseen, Uday M. Nayef, Tareq H. Abeda, Mohammed W. Muayad, Dongsheng Wen\",\"doi\":\"10.1140/epjp/s13360-025-06924-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Molten salts are widely used as thermal energy storage materials in solar thermal systems; however, their limited thermophysical properties, particularly low specific heat capacity, restrict their performance. This study uses a novel one-step method to prepare nanoparticles directly in the base salt under different preparation conditions. We have extended the examination of various preparation conditions from our previous study. The precursor material was copper sulfate uses to produce copper oxide (CuO) nanoparticles. The concentrations of the prepared CuO nanoparticles keeps fixed at 1 wt.%. The preparation processes of CuO nanoparticles were at different times and temperatures. The results reveal a significant influence of the preparation method conditions on the enhancement of thermophysical properties of nanosalt. The one-step method achieved the highest increase in specific heat capacity, with improvements of 32.63% in the solid phase and 21.74% in the liquid phase compared to the base salt without any additives. Additionally, sensible heat storage improved by 8.623% using the one-step nanosalt formulation. More notably, latent heat showed a remarkable increase of 76.46% for the one-step CuO-nanosalt compared to the pure binary salt. Furthermore, the one-step method is a cost-effective way to save on the cost and time of preparations by 89.27%. These findings underscore the crucial role of the preparation technique in determining the thermal behavior of nanosalts. Transmission electron microscopy (TEM) analysis confirmed the presence of CuO nanoparticle agglomeration in samples prepared via the one-step method, which may contribute to the observed enhancements. This work provides new insights into optimizing nanosalt formulations for more efficient thermal energy storage systems.</p></div>\",\"PeriodicalId\":792,\"journal\":{\"name\":\"The European Physical Journal Plus\",\"volume\":\"140 10\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal Plus\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjp/s13360-025-06924-7\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-025-06924-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhanced energy storage via one-step preparation of Cuo-nanosalt
Molten salts are widely used as thermal energy storage materials in solar thermal systems; however, their limited thermophysical properties, particularly low specific heat capacity, restrict their performance. This study uses a novel one-step method to prepare nanoparticles directly in the base salt under different preparation conditions. We have extended the examination of various preparation conditions from our previous study. The precursor material was copper sulfate uses to produce copper oxide (CuO) nanoparticles. The concentrations of the prepared CuO nanoparticles keeps fixed at 1 wt.%. The preparation processes of CuO nanoparticles were at different times and temperatures. The results reveal a significant influence of the preparation method conditions on the enhancement of thermophysical properties of nanosalt. The one-step method achieved the highest increase in specific heat capacity, with improvements of 32.63% in the solid phase and 21.74% in the liquid phase compared to the base salt without any additives. Additionally, sensible heat storage improved by 8.623% using the one-step nanosalt formulation. More notably, latent heat showed a remarkable increase of 76.46% for the one-step CuO-nanosalt compared to the pure binary salt. Furthermore, the one-step method is a cost-effective way to save on the cost and time of preparations by 89.27%. These findings underscore the crucial role of the preparation technique in determining the thermal behavior of nanosalts. Transmission electron microscopy (TEM) analysis confirmed the presence of CuO nanoparticle agglomeration in samples prepared via the one-step method, which may contribute to the observed enhancements. This work provides new insights into optimizing nanosalt formulations for more efficient thermal energy storage systems.
期刊介绍:
The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences.
The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.