{"title":"化学发泡诱导微孔结构及其对聚氨酯弹性体性能的影响","authors":"Maomin Zhen, Xudong Zhang, Yali Guo, Xiaodong Li, Xing Su, Xufeng Zhang, Jianping Zhang, Xiaoxia Wu, Yibing Xia, Hao Jiang, Meishuai Zou","doi":"10.1007/s10853-025-11518-w","DOIUrl":null,"url":null,"abstract":"<div><p>The rational design and precise control of microcellular architectures offer a promising route to enhance polymer performance. In this study, microcellular polyurethane elastomers (MPUEs) with tunable pore architectures were fabricated via water-controlled chemical foaming using a two-step polymerization method. Incremental water addition promoted microphase separation through the formation of highly polar urea linkages with strong hydrogen bonding. The resulting cellular structures significantly reduced matrix plastic deformation and localized strain. A multitechnique characterization approach—combining GPC, SEM, FTIR, DMA, SAXS, and in situ X-ray CT—was employed to systematically elucidate the structure–property relationships of MPUEs. Notably, MPUE-0.30 exhibited markedly superior elasticity and deformation performance compared to higher-density counterparts. Crucially, this study pioneers the quantitative decoupling of deformation contributions between the polyurethane matrix and cellular phase in microcellular elastomers. Results revealed that cellular structures absorbed up to 79% of total strain, highlighting their dominant role in energy dissipation. These findings provide a framework for the predictive design of advanced polymer systems with exceptional vibration damping and isolation capabilities, tailored for dynamic energy dissipation and mechanical wave attenuation applications.</p></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"60 41","pages":"20126 - 20142"},"PeriodicalIF":3.9000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical foaming-induced microcellular structure and its impact on polyurethane elastomer performance\",\"authors\":\"Maomin Zhen, Xudong Zhang, Yali Guo, Xiaodong Li, Xing Su, Xufeng Zhang, Jianping Zhang, Xiaoxia Wu, Yibing Xia, Hao Jiang, Meishuai Zou\",\"doi\":\"10.1007/s10853-025-11518-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The rational design and precise control of microcellular architectures offer a promising route to enhance polymer performance. In this study, microcellular polyurethane elastomers (MPUEs) with tunable pore architectures were fabricated via water-controlled chemical foaming using a two-step polymerization method. Incremental water addition promoted microphase separation through the formation of highly polar urea linkages with strong hydrogen bonding. The resulting cellular structures significantly reduced matrix plastic deformation and localized strain. A multitechnique characterization approach—combining GPC, SEM, FTIR, DMA, SAXS, and in situ X-ray CT—was employed to systematically elucidate the structure–property relationships of MPUEs. Notably, MPUE-0.30 exhibited markedly superior elasticity and deformation performance compared to higher-density counterparts. Crucially, this study pioneers the quantitative decoupling of deformation contributions between the polyurethane matrix and cellular phase in microcellular elastomers. Results revealed that cellular structures absorbed up to 79% of total strain, highlighting their dominant role in energy dissipation. These findings provide a framework for the predictive design of advanced polymer systems with exceptional vibration damping and isolation capabilities, tailored for dynamic energy dissipation and mechanical wave attenuation applications.</p></div>\",\"PeriodicalId\":645,\"journal\":{\"name\":\"Journal of Materials Science\",\"volume\":\"60 41\",\"pages\":\"20126 - 20142\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10853-025-11518-w\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-025-11518-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Chemical foaming-induced microcellular structure and its impact on polyurethane elastomer performance
The rational design and precise control of microcellular architectures offer a promising route to enhance polymer performance. In this study, microcellular polyurethane elastomers (MPUEs) with tunable pore architectures were fabricated via water-controlled chemical foaming using a two-step polymerization method. Incremental water addition promoted microphase separation through the formation of highly polar urea linkages with strong hydrogen bonding. The resulting cellular structures significantly reduced matrix plastic deformation and localized strain. A multitechnique characterization approach—combining GPC, SEM, FTIR, DMA, SAXS, and in situ X-ray CT—was employed to systematically elucidate the structure–property relationships of MPUEs. Notably, MPUE-0.30 exhibited markedly superior elasticity and deformation performance compared to higher-density counterparts. Crucially, this study pioneers the quantitative decoupling of deformation contributions between the polyurethane matrix and cellular phase in microcellular elastomers. Results revealed that cellular structures absorbed up to 79% of total strain, highlighting their dominant role in energy dissipation. These findings provide a framework for the predictive design of advanced polymer systems with exceptional vibration damping and isolation capabilities, tailored for dynamic energy dissipation and mechanical wave attenuation applications.
期刊介绍:
The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.